

POMPE A PISTONI ASSIALI A CILINDRATA VARIABILE

INDICE

Sezione	Pag.
INTRODUZIONE3	3
CARATTERISTICHE GENERALI / ISTRUZIONI4	ı
POSIZIONI DI MONTAGGIO5	j
CILINDRATE E PRESSIONI DI LAVORO6	;
PARAMETRI DI FUNZIONAMENTO	,
TARATURA DELLA CILINDRATA1	2
CENTRO DI GRAVITA'1	2
CURVE CARATTERISTICHE1	3
DIMENSIONI - POMPE SINGOLE E POMPE MULTIPLE Con Aspirazione comune20	0
ESTREMITA' ALBERI DI TRASCINAMENTO3	2
FLANGIE DI MONTAGGIO E TABELLA DI COMPATIBILITA'	6
DIMENSIONI BOCCHE	8
POSIZIONE BOCCHE DI SCARICO	8
REGOLARORI DI PRESSIONE4	1
POMPE MULTIPLE CON PRESA DI MOTO PASSANTE5	3
COME OPDINADE	1

INTRODUZIONE

Pompe a pistoni assiali a cilindrata variabile a piatto oscillante. MVP è la soluzione ideale per applicazioni nel settore mobile in circuito aperto. La struttura estremamente compatta consente il montaggio diretto sui motori endotermici.

CILINDRATE

Da 14 cm³/giro A 84,7 cm³/giro

0

PRESSIONI

Sostituisce: 03/01.2012

Max. continua 280 bar Max. intermittente 315 bar Max. di picco 350 bar

VELOCITÀ

Max. 3500 min-1

APPLICAZIONE

Media, alta pressione

SETTORE

Mobile

APPLICAZIONI TIPICHE

- Mini-pale caricatrici
- Pale caricatrici Terne
- Mini e Midi escavatori
- Caricatori telescopici
- Carrelli elevatori
- Generatori eolici
- Trattori e accessori

					O	
1	2	3	4	5	6	
1	1	\	1	1	1	
	\	1			1	
1		\ _		Jah		
			A AFTIL	7 6 10	1	
			7XII	PP		
Λ		T			_	
_			T .			
				∌l		
					٧	
	/> //			╏╬╌┈		
	\mathscr{I}	<i>()</i>		H		
⋛ ∥· : 			 	III ·		
			11111			
			my-			
				H 0		
	F		<i>7</i>	₩.	Image: Control of the	
				 ≠↓ \		
	+	The state of the s				
		Z to E	3	/ \		
1	'		S	/		
1			1	1		
1		- 1	- 1		1	
11	10	9	8		7	
• • •		•	·		•	

1	Scatola
2	Piatto oscillante
3	Blocco cilindri
4	Molla di controbilanciamento
5	Тарро
6	Limitatore cilindrata massima
7	Coperchio
8	Piatto distributore
9	Limitatore cilindrata minima
10	Pistoni
11	Piatto guida pistoni
	·

- Massima compattezza
- Lunga vita di lavoro
- Basso livello di emissione sonora
- Limitatori di cilindrata massima e minima

- Funzionamento con carichi radiali e assiali sull'albero
- Controlli di cilindrata idraulici ed
- elettro-idraulici

NOTE GENERALI

La versione con doppio paraolio è disponibile a richiesta a seconda delle configurazioni. Per maggiori informazioni consultare il nostro servizio prevendita.

DCAT048-ID01 3

0 04/02.2021

CARATTERISTICHE GENERALI / ISTRUZIONI

SENSO DI ROTAZIONE

Sinistra o destra guardando l'albero di trascinamento.

FLUIDO IDRAULICO

Fluidi idraulici a base di oli minerali secondo DIN 51524, fluidi resistenti al fuoco e fluidi biodegradabili nel rispetto dei parametri di funzionamento riportati in tabella a pag. 5 ÷ 7. Dimensionare l'impianto in modo da non inglobare aria nel fluido.

VISCOSITÀ DEL FLUIDO

Il campo di viscosità del fluido per un utilizzo ottimale delle pompe MVP è compreso tra i 15 e i 35 mm²/s (cSt). Condizioni limite di funzionamento sono:

max.: 1500 mm²/s all'avviamento alla temperatura di -25 °C con linea di aspirazione corta e diritta.

min.: 10 mm²/s alla temperatura massima di 110 °C

FILTRAZIONE

Per assicurare alla pompa il funzionamento ottimale e la massima durata, il fluido idraulico deve possedere e mantenere un grado di contaminazione entro i valori riportati in tabella.

Pressione di lavoro bar	Δp < 140	140 < Δp < 210	Δp > 210
Contaminazione classe NAS 1638	9	8	7
Contaminazione classe ISO 4406:1999	20/18/15	19/17/14	18/16/13
Da ottenere con filtro βx _(c) ≥75 se- condo ISO 16889	10 μm	10 μm	10 μm

Casappa consiglia i filtri della propria produzione:

STOCCAGGIO

Lo stoccaggio deve essere in un ambiente asciutto. Il tempo massimo di stoccaggio in condizioni ideali è di 24 mesi. La temperatura ideale di staccaggio è compresa tra 5 e 20 °C. Nessun problema in caso di temperature tra -40 °C e 50 °C. Al di sotto di -40 °C consultare il nostro servizio prevendita.

INSTALLAZIONE

4

Verificare che l'eccentricità d'accoppiamento massima sia entro 0,25 mm per ridurre carichi sull'albero dovuti a disallineamenti. È consigliato l'impiego di un giunto parastrappi adeguatamente dimensionato per assorbire eventuali colpi d'ariete. Per applicazioni con carichi assiali e radiali non conformi a quanto indicato, consultare il nostro servizio tecnico commerciale. Assicurarsi che il senso di rotazione sia coerente con quello dell'albero dal quale deriva il moto. Prima dell'installazione, il corpo della pompa deve essere riempito di fluido.

LINFE

Le tubazioni devono avere un diametro nominale non inferiore a quello delle bocche della pompa ed essere perfettamente a tenuta. Per limitare le perdite di carico, realizzare il percorso delle tubazioni più corto possibile riducendo al minimo le resistenze idrauliche (gomiti, strozzamenti, saracinesche). E' consigliabile interporre tra pompa e impianto, un tratto di tubo flessibile per ridurre la trasmissione di vibrazioni. Prima di collegare le tubazioni togliere eventuali tappi di chiusura e assicurarsi che siano perfettamente pulite. Assicurarsi che la tubazione di drenaggio sia dimensionata in modo da garantire una pressione nella carcassa inferiore a 1,5 bar assoluti. La linea di drenaggio deve essere collegata direttamente la serbatoio (non interporre filtri, valvole e scambiatori di calore) to dell'olio. Assicurarsi che le dimensioni della linea di aspirazione siano tali da garantire una pressione assoluta uguale o superiore a 0,8 bar. Pressioni di aspirazione inferiori a 0,8 bar, possono determinare un aumento delle emissioni sonore e un peggioramento delle prestazioni della pompa nonchè una diminuzione della durata.

MESSA IN FUNZIONE

Assicurarsi che i collegamenti del circuito siano corretti e che l'impianto sia nella condizione di pulizia richiesta. Immettere l'olio nel serbatoio servendosi sempre di un filtro. Sfiatare il circuito per favorire il riempimento. Avviare la pompa per qualche istante alla propria minima velocità quindi sfiatare nuovamente il circuito e verificare il livello dell'olio nel serbatoio. Aumentare gradatamente la pressione e la velocità di rotazione fino a raggiungere i valori di esercizio previsti che devono mantenersi entro i limiti fissati a catalogo.

PER BASSE TEMPERATURE

MESSA IN FUNZIONE

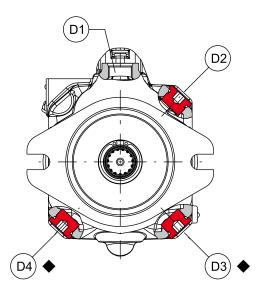
Consigliamo di scaldare l'olio prima dell'avviamento. Nel caso ciò non fosse possibile il riscaldamento di olio e pompa dovrebbe avvenire secondo le seguenti istruzioni:

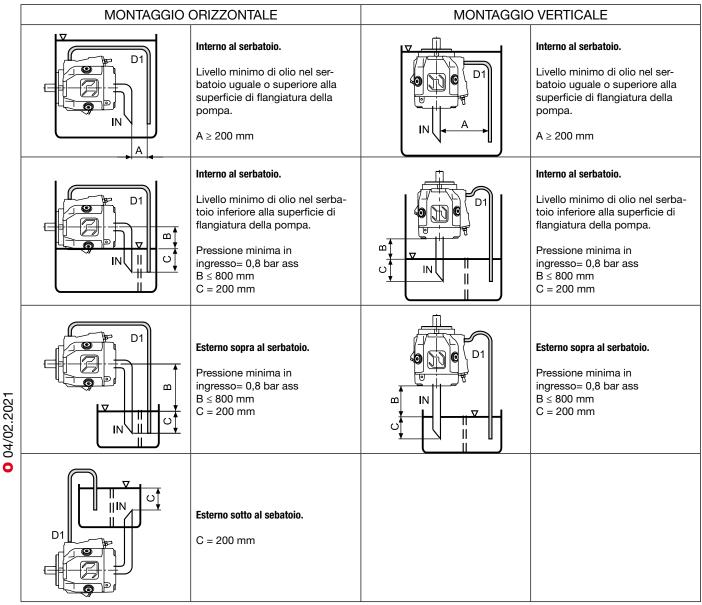
- Avviare la pompa in condizione di stand-by alla minima velocità. Mantenere questa condizione di lavoro finché la temperatura della pompa ha raggiunto -20 °C.
- Incrementare lentamente la cilindrata della pompa. Massima pressione di lavoro consentita: 50 bar.
- La massima velocità raggiungibile è strettamente legata alla geometria del circuito di aspirazione; controllare che la pompa non stia cavitando prima di incrementare la velocità
- Mantenere questa condizione di lavoro finché l'olio nel circuito ha raggiunto -10 °C.
- Da questo momento in poi la pompa può lavorare alla massima pressione.
- Controllare la portata della pompa in modo da evitare fenomeni di cavitazione.

Le temperature si riferiscono ad oli con viscosità ISO VG 32 secondo DIN 51 519.

SUGGERIMENTI

Per prevenire la cavitazione suggeriamo di:


- Scaldare l'olio nel serbatoio
- Pressurizzare il serbatoio
- Sovradimensionare il circuito di aspirazione



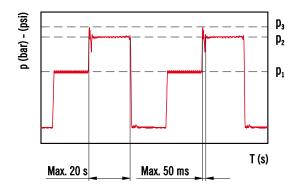
POSIZIONI DI MONTAGGIO

0

La pompa viene fornita con il foro di drenaggio in posizione D1 aperto e i fori in posizione D2, D3 e D4 tappati (◆ se disponibili). Prima del montaggio riempire la pompa di olio per almeno i 3/4 del suo volume tenendola in posizione orizzontale. La pompa può essere montata indifferentemente in posizione orizzontale o verticale. Per mantenere l'olio di riempimento utilizzare l'attacco di drenggio posto nella parte più alta della pompa. Se D1 non è il drenaggio più alto questo deve essere chiuso spostando il tappo del foro utilizzato per la linea di drenaggio. Montaggi al di sopra del pelo libero del fluido sono consentiti nel rispetto della pressione minima richiesta in aspirazione. Ad esclusione del montaggio della pompa sotto battente consigliamo di interporre un diaframma di separazione tra la linea di aspirazione e la linea di drenaggio. Per abbassare ulteriormente il livello di emissione sonora si raccomanda di montare la pompa sotto battente e di evitare linee di aspirazione con bruschi restringimenti di sezione.



IN= linea di aspirazione - D1= linea di drenaggio - A= distanza minima - B+C= dislivello ammissibile di aspirazione - C= altezza di pescaggio


CILINDRATE E PRESSIONI DI LAVORO

Comparazione MVP-MVPD

★: Serie MVPD. Per maggiori informazioni consultare il rispettivo catalogo tecnico.

DEFINIZIONE DELLE PRESSIONI

- p, Pressione di esercizio costante
- $p_{_{2}}^{\dot{}}$ Pressione del sistema (taratura valvola di massima)
- p₃ Pressione max di picco

La pressione di picco è la pressione massima consentita e corrisponde alla sovrapressione della taratura della valvola di massima sicurezza.

Sia la taratura della valvola di massima che l'eventuale sovrapressione devono essere inferiori ai loro limiti. Se il valore di taratura della valvola di massima è conforme ma la sovrapressione è superiore al limite, ridurre il valore di taratura della valvola finchè la sovrapressione rientri nei limiti.

Per applicazioni ad alta frequenza consultare il nostro servizio prevendita.

Sostituisce: 02/06.2011

PARAMETRI DI FUNZIONAMENTO

Parametri di funzionamento con oli minerali

Oli minerali tipo HL o HLP secondo DIN 51524

Pompa tipo MVP			30-28	30-34	48-45	48-53	60-60	60.72	60-84	
Cilindrata max (teorica) V _{max}	cm³/giro		28	34,8	45	53,7	60	72	84,7	
Pressione in	bar ass.	min.				0.8				
ingresso	bar ass.	max.				25				
D		p ₁	280	250	280	250	280	280	250	
Pressione max. in uscita p _{max}	bar	p ₂	315	280	315	280	315	315	280	
max		p_3	350	315	350	315	350	350	315	
Pressione max. sul drenaggio	bar ass.					1,5				
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	3500	2900	3000	2500	3000	2700	2300	
		@ n _{max}	98	101	135	134	180	194	212	
Portata max. (teorica)	l/min	@ 2000 min ⁻¹	56	70	90	107	120	144	169	
(teorica)		@ 1500 min ⁻¹	42	52	68	81	90	108	127	_
Potenza max.		@ n _{max}	45,7	42,1	63	55,9	84	90,7	88,2	
(teorica)	kW	@ 2000 min ⁻¹	26,1	29	42	44,8	56	67,2	70,6	
$(\Delta p = p_{max} \text{ cont.})$		@ 1500 min ⁻¹	19,6	21,8	31,5	33,6	42	50,4	52,9	_
Coppia max.	Nimo	@ p _{max} cont.	124,8	138,5	200,5	213,7	267,4	320,9	337	
(teorica)	Nm	@ 100 bar	44,6	55,4	71,6	85,5	95,5	114,6	134,8	
Momento di inerzia delle parti rotanti	kgm²		0,002	0,002	0,003	0,003	0,008	0,008	0,008	
Volume di olio nel corpo	1		0,85	0,85	1	1	1,3	1,3	1,3	
Massa (appross.)	kg		15	15	19	19	22	22	22	_
Guarnizioni					N= Buna		V= Viton			
		min.			-25		-15			_
Temperatura di esercizio	°C	max. continua			80		110			
COCIOIZIO		max. picco			100		125			

(1) = con pressione di ingresso di 1 bar ass. e viscosità compresa tra 15 e 35 mm²/s (cSt).

Riducendo la cilindrata o aumentando la pressione in ingresso la velocità di rotazione varia. Vedere tabella a pag.10. I limiti di veloctà max. sono: MVP 30: 3500 min⁻¹ - MVP 48: 3000 min⁻¹ - MVP 60: 3000 min⁻¹

Per condizioni di funzionamento diverse da quelle indicate, consultare il nostro servizio prevendita.

DCAT048-ID01 7

04/02.2

PARAMETRI DI FUNZIONAMENTO

Parametri di funzionamento con oli resistenti al fuoco

(1) = con 1 bar ass. sull'ingresso e viscosità compresa tra 15 e 35 mm²/s (cSt)..

Pompa tipo MVP			30-28	30-34	48-45	48.53	60.60	60.72	60-84
- · · ·		p ₁				140			
Pressione max. in uscita p _{max}	bar	p ₂				150			
usona P _{max}		p ₃				160			
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	2200	1800	2000	1700	2000	1700	1500
Guarnizioni						N= Buna			
Temperatura di	°C	min.				2			
esercizio	-0	max.				55			
Durata del cuscinetto (risp. oli minerali)	%					20 %			

Pompa tipo MVP			30-28	30-34	48-45	48-53	60-60	60.72	60-84
		P ₁	·			160			
Pressione max. in uscita p _{max}	bar	p ₂				170			
acona P _{max}		P ₃				180			
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	2350	1900	2150	1800	2150	1800	1600
Guarnizioni						N= Buna			
Temperatura di	°C	min.				2			
esercizio	٠.	max.				60			
Durata del cuscinetto (risp. oli minerali)	%					40 %			

Pompa tipo MVP			30-28	30-34	48-45	48.53	60-60	60.72	60.84
		P ₁				180			
Pressione max. in uscita p _{max}	bar	P ₂				195			
doorta P _{max}		p ₃				210			
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	2350	1900	2150	1800	2150	1800	1600
Guarnizioni						N= Buna			
Temperatura di	°C	min.				-10			
esercizio	C	max.				60			
Durata del cuscinetto (risp. oli minerali)	%					40 %			

Sostituisce: 02/06.2011

0 04/02.2021

PARAMETRI DI FUNZIONAMENTO

Parametri di funzionamento con oli resistenti al fuoco

(1) = con 1 bar ass. sull'ingresso e viscosità compresa tra 15 e 35 mm²/s (cSt)..

HFD - Esteri fosforici									
Pompa tipo MVP			30-28	30-34	48-45	48-53	60-60	60.72	60-84
December 1		P ₁				200			
Pressione max. in uscita p _{max}	bar	P ₂				220			
dona P _{max}		p ₃				240			
Velocità max. n _{max}	min⁻¹	@ V _{max} (1)	2350	1900	2150	1800	2150	1800	1600
Guarnizioni						V= Viton			
Temperatura di	°C	min.				-10			
esercizio	C	max.				80			
Durata del cuscinetto (risp. oli minerali)	%					90 %			
	%					90 %			

Parametri di funzionamento con oli biodegradabili

HETG - Fluidi a base	vegetale	(il contenuto	di acqua	non deve	mai super	are lo 0,1	%)		
Pompa tipo MVP			30-28	30-34	48-45	48-53	60-60	60.72	60.84
		p ₁				180			
Pressione max. in uscita p _{maxax}	bar	p ₂				195			
uscita P _{maxax}		p ₃				210			
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	2350	1900	2150	1800	2150	1800	1600
Guarnizioni						N= Buna			
Temperatura di	°C	min.				-10			
esercizio	30	max.				60			
Durata del cuscinetto (risp. oli minerali)	%					50 %			

Pompa tipo MVP			30-28	30-34	48-45	48.53	60-60	60.72	60-84
Б .		P ₁				180			
Pressione max. in uscita p _{maxax}	bar	P ₂				195			
uscita P _{maxax}		p ₃				210			
Velocità max. n _{max}	min ⁻¹	@ V _{max} (1)	2350	1900	2150	1800	2150	1800	1600
Guarnizioni						V= Viton			
Temperatura di	°C	min.				-15			
esercizio	C	max.				90			
Durata del cuscinetto (risp. oli minerali)	%					75 %			

Pompa tipo MVP			30-28	30-34	48-45	48.53	60-60	60.72	60.84
Guarnizioni						V= Viton			
Temperatura di esercizio	°C	min.				-15			
	C	max.		,		80			
Durata del cuscinetto (risp. oli minerali)	%					100 %			

PARAMETRI DI FUNZIONAMENTO

Determinazione di una pompa

Q	l/min	Portata
M	Nm	Coppia
P	kW	Potenza
V	cm³/giro	Cilindrata
n	min ⁻¹	Velocità
Δp	bar	Pressione
η _ν = η _ν (\	⁄, ∆p, n)	Rendimento volumetrico
$\eta_{hm} = \eta_{hm}$, (V, ∆p, n)	Rendimento idro-meccanico
$\eta_t = \eta_v \bullet$	η_{hm}	Rendimento totale

$$\mathbf{Q} = \mathbf{Q}_{\text{theor.}} \bullet \mathbf{\eta}_{\text{v}}$$

$$\mathbf{Q}_{\text{theor.}} = \frac{V (\text{cm}^{3}/\text{giro}) \bullet \text{n (min}^{-1})}{1000}$$

$$\mathbf{M} = \frac{\mathbf{M}_{\text{theor.}}}{\mathbf{\eta}_{\text{hm}}}$$

$$\mathbf{M}_{\text{theor.}} = \frac{\Delta p (\text{bar}) \bullet V (\text{cm}^{3}/\text{giro})}{62,83}$$

$$\mathbf{P}_{\text{IN}} = \frac{\mathbf{P}_{\text{OUT}}}{\mathbf{\eta}_{\text{t}}}$$
[kW]

Δp (bar) • Q (l/min) 600

Carichi massimi ammessi sull'albero

Pompa tipo				MVP 30•28	MVP 30•34	MVP 48•45	MVP 48•53	MVP 60•60	MVP 60•72	MVP 60•84
F _{ax} Forza assiale	Fax — Frad — 9610/1407		N	1000	1000	1500	1500	2000	2000	2000
F _{rad} Forza radiale	L/2 L/2	@ L/2	N	1500	1500	1500	1500	3000	3000	3000

Variazione in % della velocità massima in funzione della pressione di ingresso e della riduzione di cilindrata

Pressione in ingresso			Cilindrata %			
bar ass.	65	70	80	90	100	
0,8	120	115	105	97	90	
0,9	120	120	110	103	95	
1,0	120	120	115	107	100	- :
1,2	120	120	120	113	106	
1,4	120	120	120	120	112	_ _ :
1,6	120	120	120	120	117	_
2,0	120	120	120	120	120	_

La velocità massima non deve superare i limiti specificati a pagina 7.

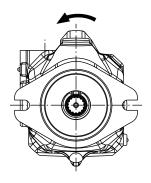
0

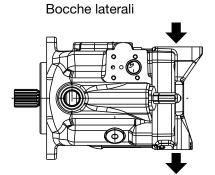
Esempio 1

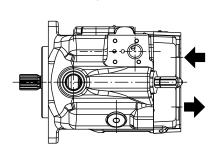
Cilindrata: 100 %

Velocità: 100 % Pressione in ingresso: 1,0 bar ass. Esempio 2 Cilindrata: 80 %

Pressione in ingresso: 1,0 bar ass.

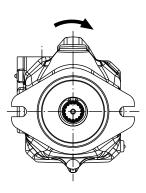

Velocità: 115 %

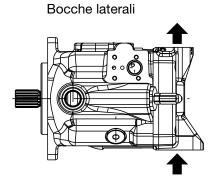


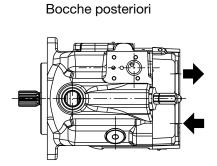

PARAMETRI DI FUNZIONAMENTO

DEFINIZIONE DEL SENSO DI ROTAZIONE GUARDANDO L'ALBERO DI TRASCINAMENTO

Rotazione sinistra

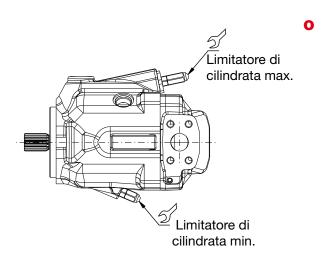


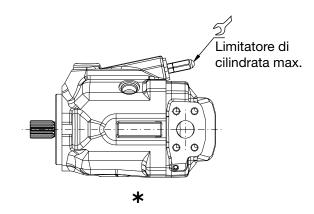




Bocche posteriori

Rotazione destra

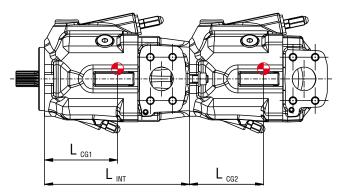




TARATURA DELLA CILINDRATA

- E: Limitatore di cilindrata max. (il limitatore di cilindrata min. è tappato)
- G: Limitatore di cilindrata min. e max.

* Il corpo speciale senza limitatore di cilindrata min. è disponibile a richiesta, consultare il nostro servizio prevendita



Coppia di serraggio 15^{±1} Nm

			MVP30	MVP48	MVP60
Common di tanatura cilia duata masu	3/-:	da	17,4	34,9	55
Campo di taratura cilindrata max.	cm³/giro –	а	34,8	53,7	84,7
Compa di tavatura cilinduata mia	am3/aira	da	0	0	0
Campo di taratura cilindrata min	cm³/giro -	а	17,4	10,7	38,1
1 Giro di vite cambia la cilindrata	am ³ /aira	E	2,8	3,2	5,0
approssimativamente di	cm³/giro -	F	2,3	3,0	4,2

Per valori di taratura diversi, consultare il nostro servizio prevendita.

CENTRO DI GRAVITA'

Centro di gravità

 $\mathbf{M}_{\mathrm{MF}} = \frac{\mathsf{L}_{\mathrm{CG1}} \bullet \mathsf{m}_{1} + (\mathsf{L}_{\mathrm{INT}} + \mathsf{L}_{\mathrm{CG2}}) \bullet \mathsf{m}_{2}}{102} \quad [\mathrm{Nm}]$

 ${
m M_{MF}}$: Momento sulla flangia di montaggio L $_{
m CG}$: Distanza del centro di gravità dalla

flangia di montaggio (mm)

m: Massa (kg)

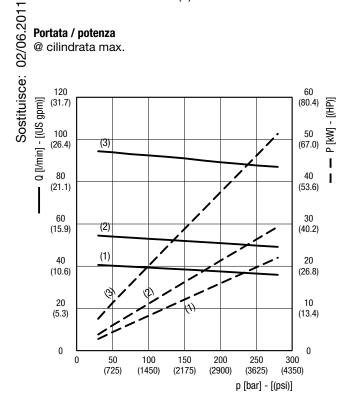
		MVP30	MVP48	MVP60
L _{CG1}	mm (in)	100 (3.94)	116 (4.57)	120 (4.72)
L _{CG2}	mm (in)	90 (3.54)	99 (3.90)	107 (4.21)
L _{INT}	mm (in)	208 (8.19)	233 (9.17)	253 (9.96)

Per pompe singole considerare i valori L CG2

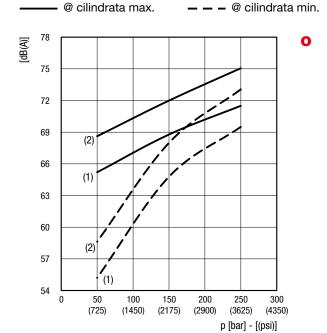
I valori mostrati sono indicativi. Per i valori esatti consultare il nostro servizio prevendita.

04/02.2

MVP30•28

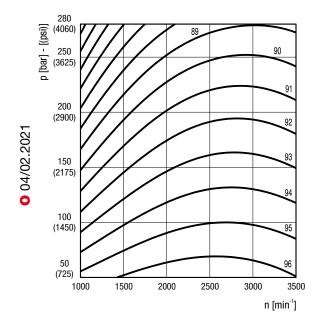

CURVE CARATTERISTICHE

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

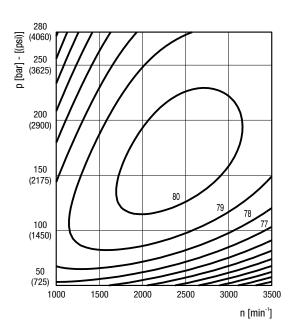

(2) 2000 min⁻¹

(3) 3500 min⁻¹

Portata / potenza @ cilindrata max.



Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m



Rendimento volumetrico

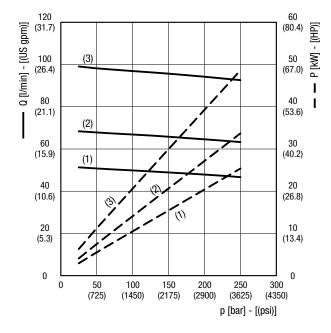
@ cilindrata max.

Rendimento totale @ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

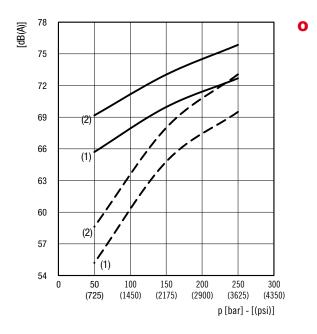
MVP30•34

CURVE CARATTERISTICHE

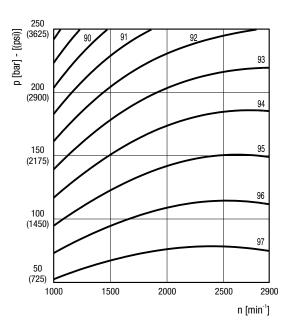

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

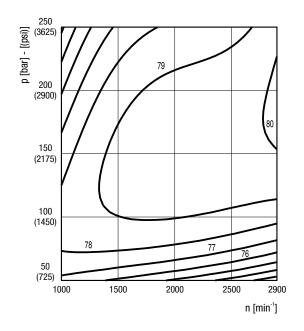
(2) 2000 min⁻¹

(3) 2900 min⁻¹


Portata / potenza

@ cilindrata max.


Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m


Rendimento volumetrico

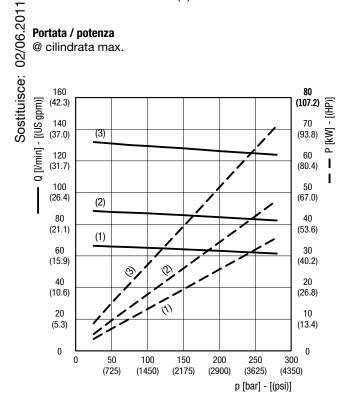
@ cilindrata max.

Rendimento totale

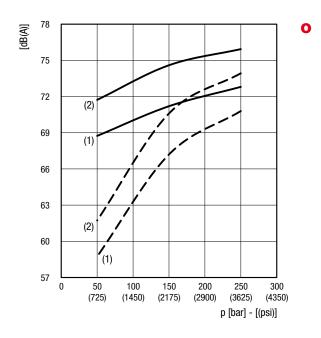
@ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

MVP48•45

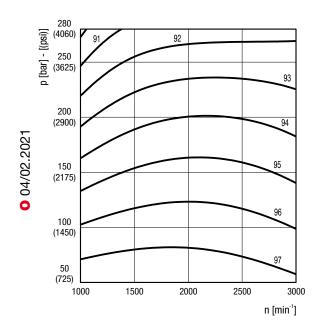

CURVE CARATTERISTICHE

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

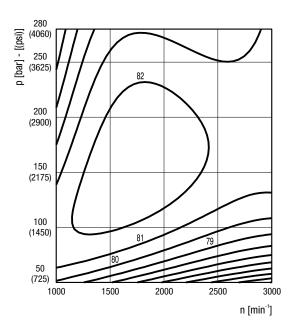

(2) 2000 min⁻¹

(3) 3000 min⁻¹

Portata / potenza @ cilindrata max.



Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m @ cilindrata max. - - @ cilindrata min.



Rendimento volumetrico

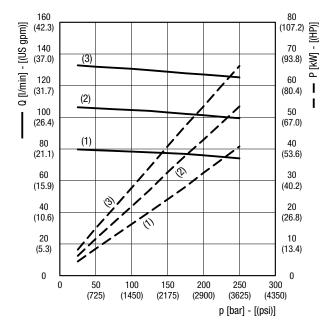
@ cilindrata max.

Rendimento totale @ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

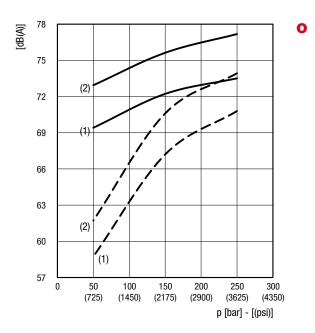
MVP48•53

CURVE CARATTERISTICHE

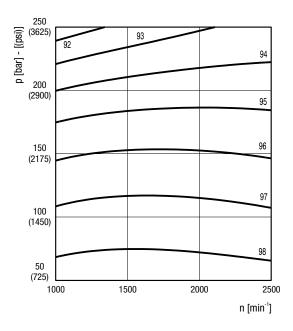

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

(1) 1300 min ⁻¹

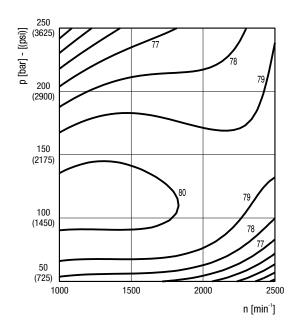
(3) 2500 min⁻¹


Portata / potenza

@ cilindrata max.


Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m

— @ cilindrata max. — — — @ cilindrata min.


Rendimento volumetrico

@ cilindrata max.

Rendimento totale

@ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

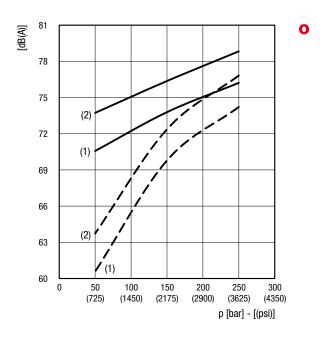
16 DCAT048-ID01

04/02.202

MVP60•60

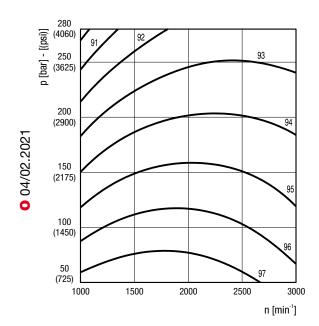

CURVE CARATTERISTICHE

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

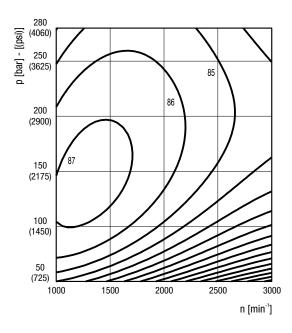

(2) 2000 min⁻¹

(3) 3000 min⁻¹

Portata / potenza @ cilindrata max.



Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m @ cilindrata max. - - @ cilindrata min.



Rendimento volumetrico

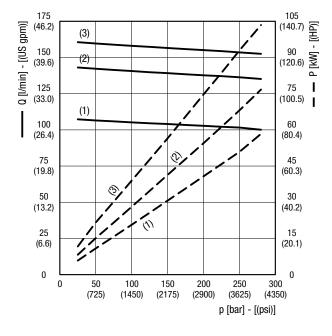
@ cilindrata max.

Rendimento totale @ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

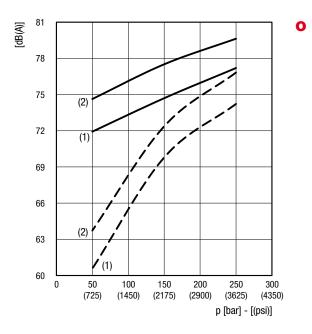
MVP60•72

CURVE CARATTERISTICHE

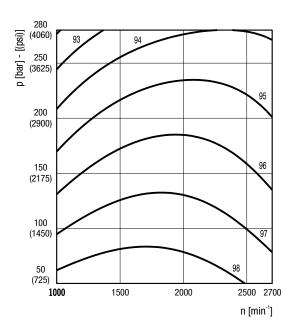

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

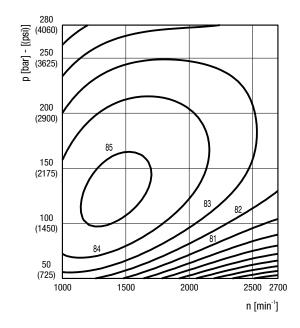
(2) 2000 min⁻¹

(3) 2700 min⁻¹


Portata / potenza

@ cilindrata max.


Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m


Rendimento volumetrico

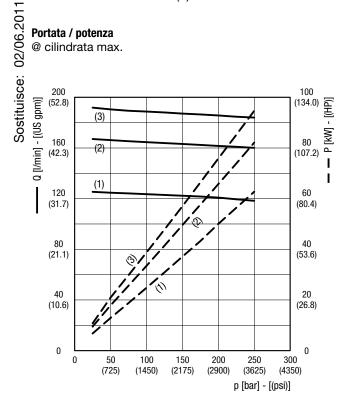
@ cilindrata max.

Rendimento totale

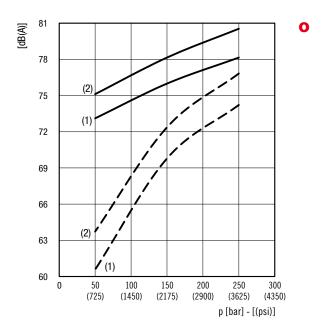
@ cilindrata max.

I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

MVP60 • 84

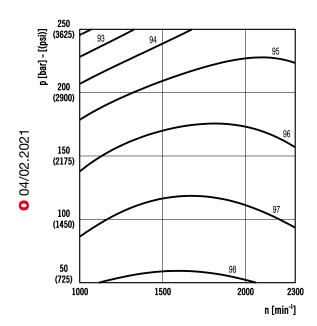

OPERATING CURVES

Le curve sono state ottenute alla temperatura di 50 °C, utilizzando olio con viscosità 46 mm²/s (cSt) a 40 °C e alle seguenti velocità: (1) 1500 min⁻¹

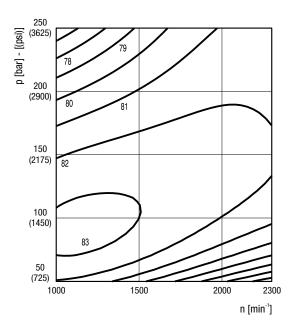

(2) 2000 min⁻¹

(3) 2300 min⁻¹

Portata / potenza @ cilindrata max.

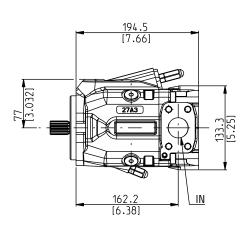


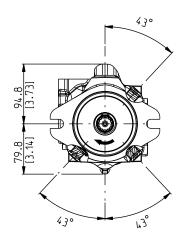
Livello sonoro Distanza di rilevamento tra il microfono e la pompa = 1 m @ cilindrata max. - - @ cilindrata min.

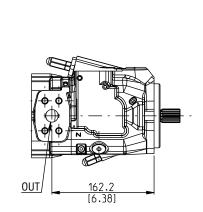


Rendimento volumetrico

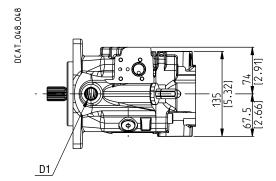
@ cilindrata max.

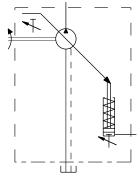

Rendimento totale @ cilindrata max.




I valori mostrati nei diagrammi sono indicativi. I valori reali possono cambiare al variare della configurazione della pompa.

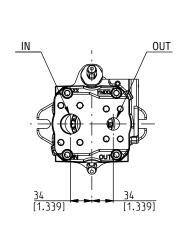
DIMENSIONI - BOCCHE LATERALI

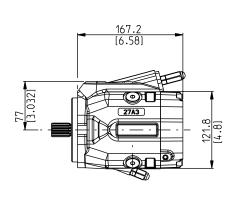

Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40

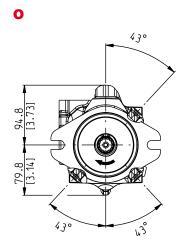


0

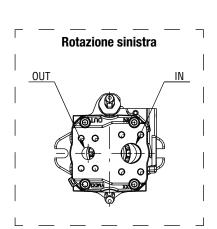
Sostituisce: 02/06.2011

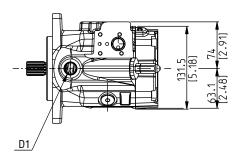

0 04/02.2021

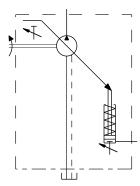



Sostituisce: 02/06.2011

DIMENSIONI - BOCCHE POSTERIORI

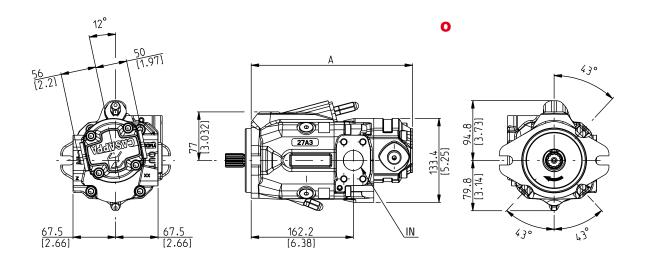

Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40



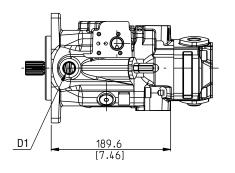


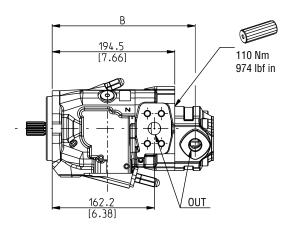
DCAT_048_047

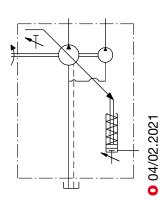
0 04/02.2021


MVP30/KP20

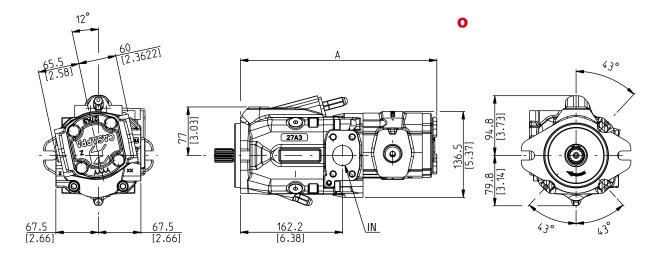
MVP codice P7 KP20 codice N5


Flangia intermedia aspirazione comune:

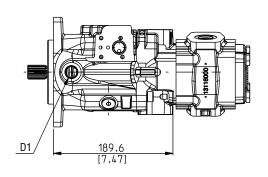

DIMENSIONI - POMPE MULTIPLE

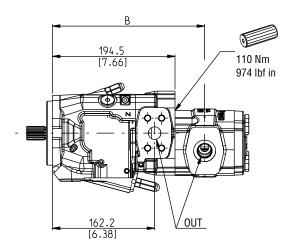

Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40

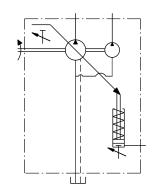
DCAT_048_048_KP20


0 -	Pompa	a a ingranaggi KA	PPA 20 (per ma	ggiori informazior	ni consultare il no	stro servizio prev	vendita)	_	
Pompa tipo	4	6,3	8	11,2	14	16	20	Dimen	sioni
MVP30 -	247,5 (9.74)	250 (9.84)	252,5 (9.94)	256 (10.08)	260 (10.24)	265,5 (10.45)	272 (10.71)	mm (in)	A
IVIVESU -	218,5 (8.60)	221 (8.70)	223,5 (8.80)	227 (8.94)	225,5 (8.86)	231 (9.09)	237,5 (9.35)	mm (in)	В

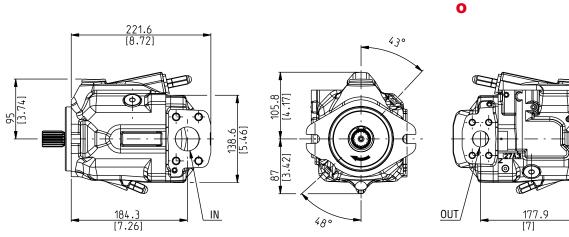
MVP30/PHP20


DIMENSIONI - POMPE MULTIPLE

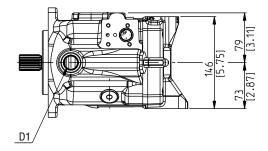

Flangia intermedia aspirazione comune: MVP codice I7 PHP20 codice S7 Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40 Disponibile anche in combinazione con PLP20

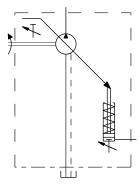

Sostituisce: 02/06.2011

DCAT_048_048_PHP20


0 04/02.2021

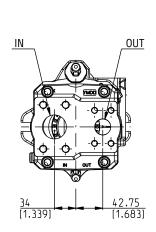
0	Pom	pa a ingra	anaggi PC	DLARIS PI	H 20 (per	maggiori	informazi	oni consu	ıltare il no	stro servi	zio prever	ndita)			
Pompa tipo	8	10,5	11,2	14	16	18	19	20	23	24,5	25	27,8	31,5	Dime sio	
MVP30	274,6 (10.81)	278,6 (10.97)	279,1 (10.99)	284,1 (11.41)	287,6 (11.32)	289,8 (11.41)	291 (11.46)	294,1 (11.58)	297,6 (11.72)	299,9 (11.81)	301,6 (11.87)	304,4 (11.98)	311,6 (12.27)	mm (in)	A
IVIVESU	228 (8.98)	231 (9.09)	231,5 (9.11)	236,5 (9.31)	239,5 (9.43)	230,4 (9.07)	231 (9.09)	232,5 (9.15)	234,2 (9.22)	235,3 (9.26)	236,5 (9.31)	237,9 (9.36)	241,5 (9.51)	mm (in)	В

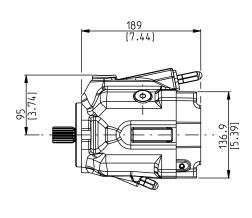

Sostituisce: 02/06.2011

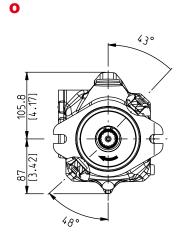

DIMENSIONI - BOCCHE LATERALI

Alberi di trascinamento: pag. 33 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40

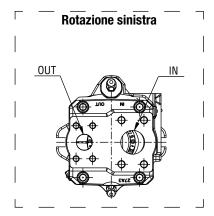
DCAT_048_053

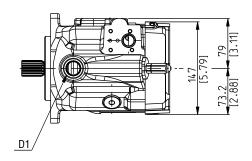


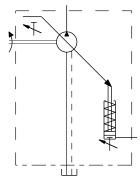

0 04/02.2021


Sostituisce: 02/06.2011

DIMENSIONI - BOCCHE POSTERIORI

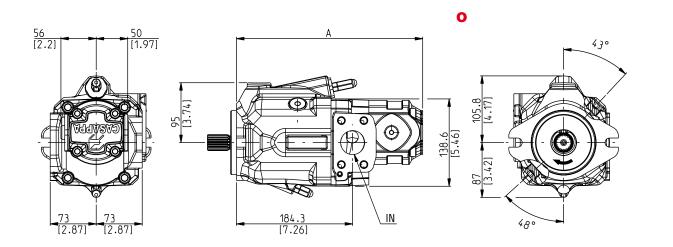

Alberi di trascinamento: pag. 33 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40





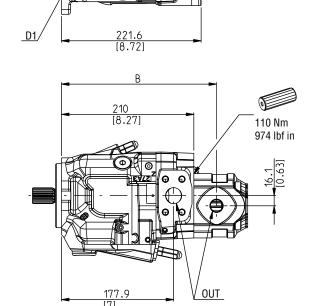
DCAT_048_031

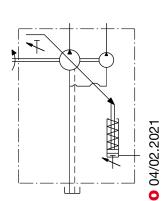
0 04/02.2021


MVP48/KP20

MVP codice P7 KP20 codice N5

Flangia intermedia aspirazione comune:


DIMENSIONI - POMPE MULTIPLE


Alberi di trascinamento: pag. 33 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40

207.1 [8.16]

DCAT_048_031_KP20

Domna a ingranaggi KADDA 20	(per maggiori informazioni consultare il	nactro carvizio prevendita)
i onipa a ingranaggi NALI A 20	(per maggion imormazioni consultare ii	HOSTIO SELVIZIO PLEVEHUITA)

Pompa tipo	4	6,3	8	11,2	14	16	20	Dimen	sioni
MVD40	263 (10.35)	265,5 (10.45)	268 (10.55)	271,5 (10.69)	275,5 (10.85)	281 (11.06)	287,5 (11.32)	mm (in)	A
MVP48 -	234 (9.21)	236,5 (9.31)	239 (9.41)	242,5 (9.55)	241 (9.49)	246,5 (9.70)	253 (9.96)	mm (in)	В

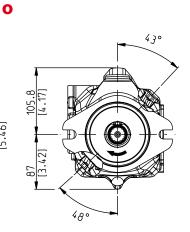
26 DCAT048-ID01

Sostituisce: 02/06.2011

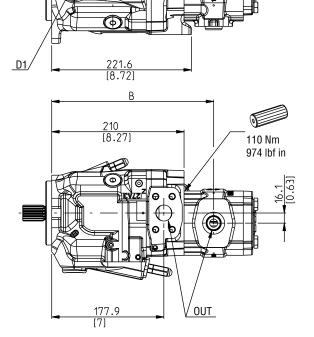
MVP48/PHP20

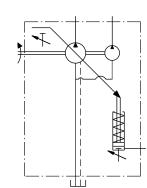
Flangia intermedia aspirazione comune:

DIMENSIONI - POMPE MULTIPLE


.

MVP codice I7 PHP20 codice S7 Alberi di trascinamento: pag. 33 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40 Disponibile anche in combinazione con PLP20


Sostituisce: 02/06.2011


73 73 [2.87] [2.87]

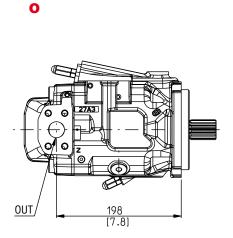
60 [2.3622]

DCAT_048_031_PHP

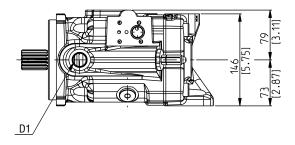
0 04/02.2021

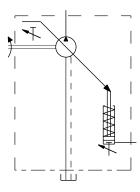

O	Pom	pa a ingra	anaggi PC	LARIS PI	H 20 (per	maggiori	informazi	oni consu	ltare il no	stro servi	zio prever	ndita)			
Pompa tipo	8	10,5	11,2	14	16	18	19	20	23	24,5	25	27,8	31,5	Dime	
MVP48	290,1 (11.42)	294,1 (11.58)	294,6 (11.60)	299,6 (11.80)	303,1 (11.93)	305,3 (12.02)	306,5 (12.07)	309,6 (12.19)	313,1 (12.33)	315,4 (12.42)	317,1 (12.48)	319,9 (12.59)	327,1 (12.88)	mm (in)	Α
IVI V P40	243,5 (9.59)	246,5 (9.70)	247 (9.72)	252 (9.92)	255 (10.04)	245,9 (9.68)	246,5 (9.70)	248 (9.76)	249,7 (9.83)	250,8 (9.87)	252 (9.92)	253,4 (9.97)	257 (10.12)	mm (in)	В

Sostituisce: 02/06.2011

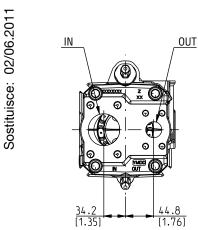

MVP60

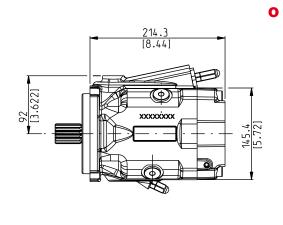
DIMENSIONI - BOCCHE LATERALI

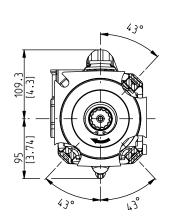

Alberi di trascinamento: pag. $34 \div 35$ Flange di montaggio: pag. $36 \div 37$ Bocche: pag. $38 \div 40$



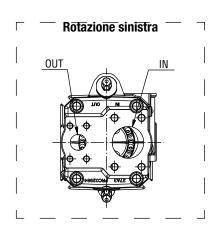
DCAT_048_034

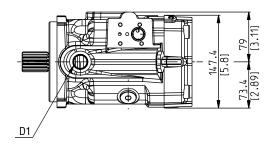


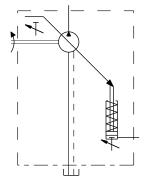

0 04/02.2021



DIMENSIONI - BOCCHE POSTERIORI


Alberi di trascinamento: pag. $34 \div 35$ Flange di montaggio: pag. $36 \div 37$ Bocche: pag. $38 \div 40$

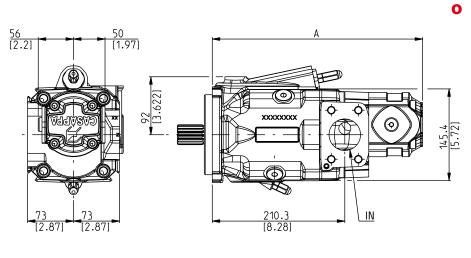


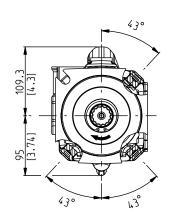


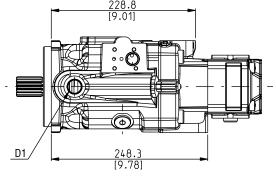
DCAT_048_005

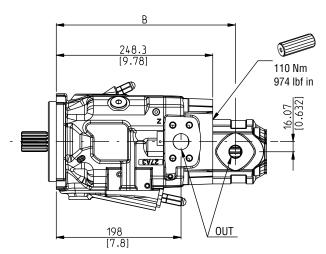
0 04/02.2021

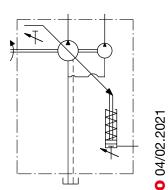
MVP60/KP20


MVP codice P7 KP20 codice N5


DCAT_048_029_KP20


Flangia intermedia aspirazione comune:


DIMENSIONI - POMPE MULTIPLE

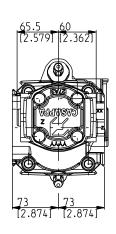

Alberi di trascinamento: pag. 34 ÷ 35 Flange di montaggio: pag. 36 ÷ 37 Bocche: pag. 38 ÷ 40

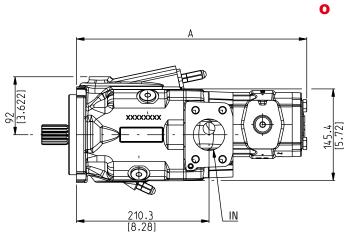
Pompa a ingranaggi KAPPA 20 (per maggiori informazioni consultare il nostro servizio prevendita)

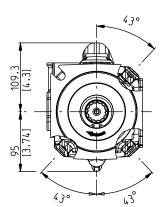
Pompa tipo	4	6,3	8	11,2	14	16	20	Dimen	sioni
MUDCO	301,3 (11.86)	303,8 (11.96)	306,3 (12.06)	309,8 (12.20)	313,8 (12.35)	319,3 (12.57)	325,8 (12.83)	mm (in)	A
MVP60 -	272,3 (10.72)	274,8 (10.82)	277,3 (10.92)	280,8 (11.06)	279,3 (11.00)	284,8 (11.21)	291,3 (11.47)	mm (in)	В

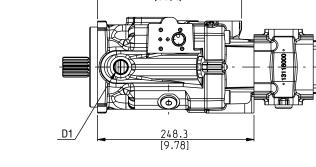
DC AT_048_035_PHP

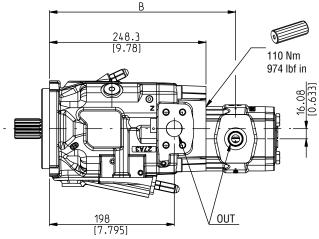
MVP60/PHP20

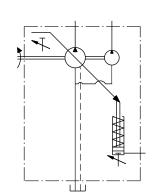

DIMENSIONI - POMPE MULTIPLE

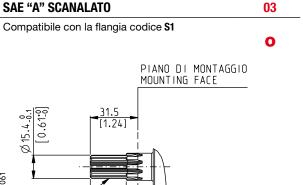

. .


Flangia intermedia aspirazione comune: MVP codice I7 PHP20 codice S7


Alberi di trascinamento: pag. $34 \div 35$ Flange di montaggio: pag. $36 \div 37$ Bocche: pag. $38 \div 40$

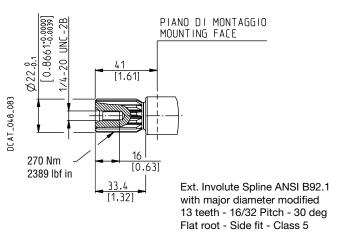

Disponibile anche in combinazione con PLP20

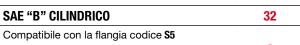


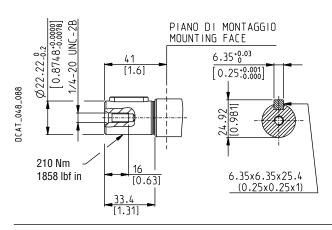


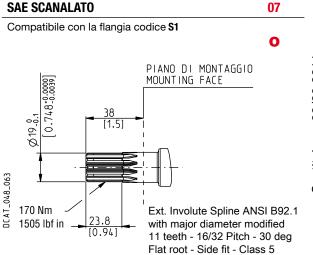
	Pompa a ingranaggi POLARIS PH 20 (per maggiori informazioni consultare il nostro servizio prevendita)
Dama	

Pompa tipo	8	10,5	11,2	14	16	18	19	20	23	24,5	25	27,8	31,5	Dime	
MVP60	328,4 (12.93)	332,4 (13.09)	332,9 (13.11)	337,9 (13.30)	341,4 (13.44)	343,6 (13,53)		347,9 (13.70)	351,4 (13.83)	353,7 (13.93)	355,4 (13.99)	358,2 (14.10)	365,4 (14.39)	mm (in)	
INIVPOU	281,8 (11.09)	284,8 (11.21)	285,3 (11.23)	290,3 (11.43)	293,3 (11.55)	284,2 (11.19)		286,3 (11.27)	288 (11.34)	289,1 (11.38)	290,3 (11.43)		295,3 (11.63)	mm (in)	В

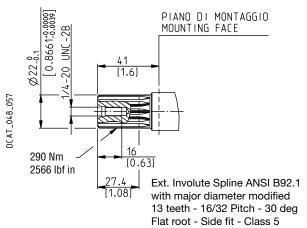

ESTREMITA' ALBERI DI TRASCINAMENTO




Ext. Involute Spline SAE J498B with major diameter modified 9 teeth - 16/32 Pitch - 30 deg Flat root - Side fit - Class 1


SAE "B" SCANALATO 04

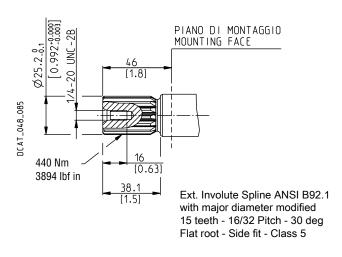
Compatibile con la flangia codice \$5



04/02.

Per estremità di alberi di trascinamento diversi consultare il nostro servizio prevendita.

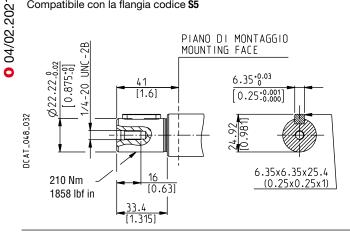
ESTREMITA' ALBERI DI TRASCINAMENTO


SAE "B" SCANALATO 04

Compatibile con la flangia codice \$5

Sostituisce: 02/06.2011 PIANO DI MONTAGGIO MOUNTING FACE 0.8661 [1.6] DCAT_048_084 270 Nm Ext. Involute Spline ANSI B92.1 [0.63] 2389 lbf in with major diameter modified 13 teeth - 16/32 Pitch - 30 deg 33.1 [1.3] Flat root - Side fit - Class 5

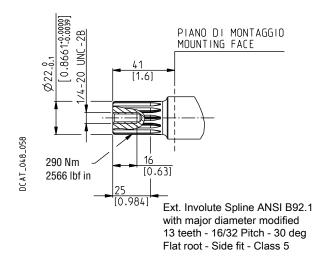
SAE "BB" SCANALATO 05


Compatibile con la flangia codice \$5

SAE "B" CILINDRICO

32

Compatibile con la flangia codice \$5

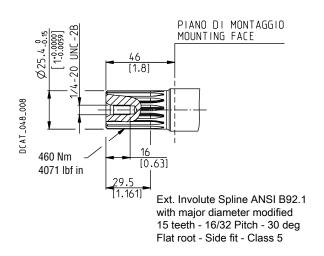


SAE "B" SCANALATO

Compatibile con la flangia codice \$5

0

4R



SAE "BB" SCANALATO

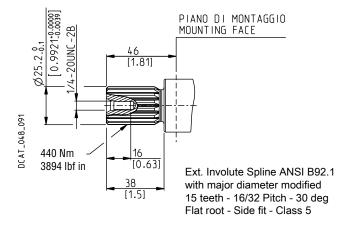
5R

Compatibile con la flangia codice \$5

0

Per estremità di alberi di trascinamento diversi consultare il nostro servizio prevendita.

ESTREMITA' ALBERI DI TRASCINAMENTO

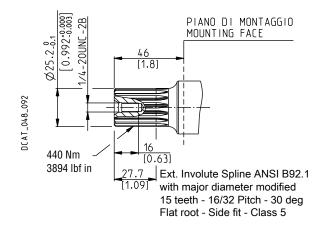

SAE "B" SCANALATO 04 Compatibile con la flangia codice \$5 PIANO DI MONTAGGIO 0.8661-0.0039 MOUNTING FACE 41 Ø22-0.1 20 [1.6]DCAT_048_104 270 Nm Ext. Involute Spline ANSI B92.1 2389 lbf in [0.63] with major diameter modified 15 teeth - 16/32 Pitch - 30 deg

SAE "BB" SCANALATO

05

Flat root - Side fit - Class 5

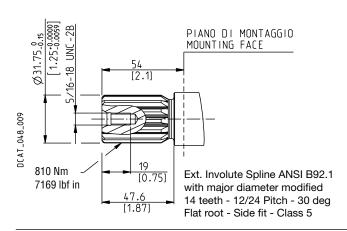
Compatibile con la flangia codice \$5



SAE "BB" SCANALATO

5R

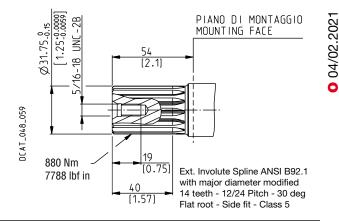
Compatibile con la flangia codice \$5


0

SAE "C" SCANALATO

06

Compatibile con le flange codice \$7 e \$8

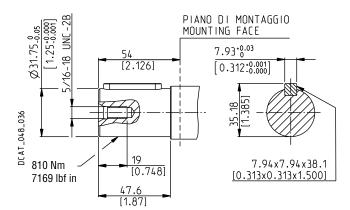


SAE "C" SCANALATO

6R

Compatibile con le flange codice \$7 e \$8

0

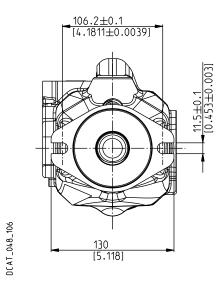

Per estremità di alberi di trascinamento diversi consultare il nostro servizio prevendita.

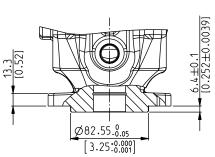
ESTREMITA' ALBERI DI TRASCINAMENTO

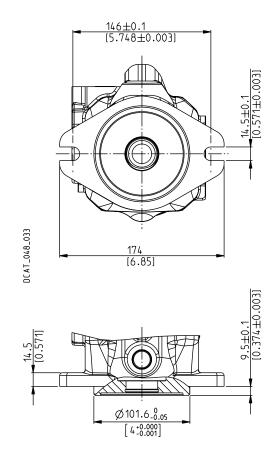
34

SAE "C" CILINDRICO

Compatibile con la flangia codice \$8




FLANGE DI MONTAGGIO E TABELLA DI COMPATIBILITA'


SAE "A" 2 FORI S1
Conforme a SAE J744

0

SAE "B" 2 FORI	S5
Conforme a SAE J744	

	ALE	SERI DI TRASCINEME Vedere pag. 32	ENTO
Pompa tipo	03	07	04
MVP30	X	Х	X

X Combinazione disponibile

	O ALBERI DI TRASCINEMENTO Vedere pag. 32 ÷ 35							
Pompa tipo	04	4R	32	05	5R	06	6R	34
MVP30	X	X	X					
MVP48	X	X	X	X	X			
MVP60	X			X	X	X	X	X

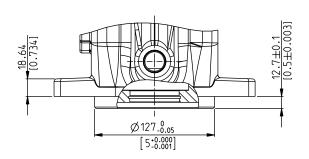
X Combinazione disponibile

0 04/02.2021

36

Sostituisce: 02/06.2011

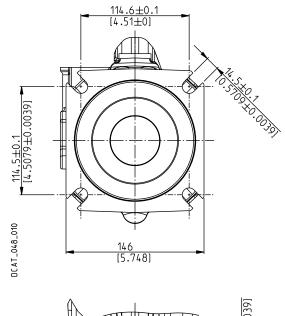
DCAT_048_060

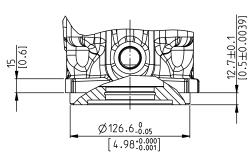

FLANGE DI MONTAGGIO E TABELLA DI COMPATIBILITA'

0

SAE "C" 2 FORI S7

Conforme a SAE J744


180±0.1 [7.087±0.003] 1.0±0.1 1.0±0.



	0		ERI DI TR 'edere pa			
Pompa tipo	04	05 5R 06 6R				
MVP60	v	v	v	v	v	v

X Combinazione disponibile

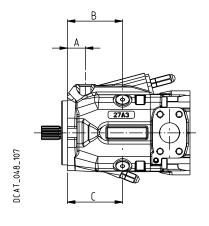
SAE "C" 4 FORI	S8
Conforme a SAE J744	

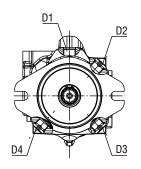
	0	ALBERI DI TRASCINEMENTO Vedere pag. 34 ÷ 35					
Pompa tipo	04	05 5R 06 6R					
MVP60	Х	X	Х	Х	Х	Х	

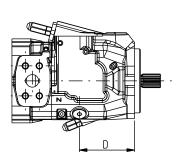
X Combinazione disponibile

0 04/02.2021

TIPOLOGIA BOCCHE


_												
0	BOCCHE IN/OUT						CHE DI AGGIO	BOCCHE SENSIN		PON KP20 /	—	
Bocche tipo		plit SM		plit SS	S/ OI	AE DT	Gas BSPP	SAE ODT (●)	Gas BSPP (●)	SAE ODT	Gas BSPP	SAE ODT
-	IN	OUT	IN	OUT	IN	OUT	D1 - D2	- D3 - D4	Х	Х	OUT	OUT
MVP30	MD	MB	SD	SB	OG (■)	OD (■)	_	ОВ	GA	03	GD	ОС
MVP48	ME	МС	SE	SC	OH (■)	OF (■)	GD	ОС	GA	03	GD	ОС
MVP60	MF	МС	SF	SC	MF	OF	GD	ОС	GA	03	GD	ОС


(X) Bocca load sensing. Per maggiori informazioni consultare il nostro servizio prevendita.


- (●) Standard.
- (■) Solo per bocche posteriori.

POSIZIONE BOCCHE DI DRENAGGIO

0

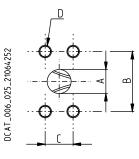
Pompa	Α	В	C	D
tipo	mm (in)	mm (in)	mm (in)	mm (in)
MVP30	28,5 (1.12)	87,5 (3.44)	87,5 (3.44)	87,5 (3.44)
MVP48	36 (1.42)	97 (3.82)	_	97 (3.82)
MVP60	37 (1.46)	113 (4.45)	99 (3.90)	99 (3.90)

38 DCAT048-ID01

000 00/10

DIMENSIONI BOCCHE

Coppia di seraggio per bocca lato bassa pressione

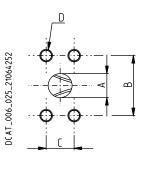

Coppia di seraggio per bocca lato alta pressione

BOCCHE FLANGIATE SAE J518 - Standard pressure series 3000 psi - Codice 61

SSM

Filettatura metrica ISO 60° conforme a ISO/R 262

CODICE	Dim.	Α	В	С	D	5)	1
CODICE	Nominale	mm	mm	mm	Filettatura	Nm	Nm
		(in)	(in)	(in)	Profondità mm (in)	(lbf in)	(lbf in)
MB	3/4"	20	47,6	22,2	M 10		45 +2,5
IVID	3/4	(0.79)	(1.87)	(0.87)	17 (0.67)	_	$(398 \div 420)$
MC	1"	25,4	52,4	26,2	M 10		30 +2,5
MC	1	(1.00)	(2.06)	(1.03)	17 (0.67)	_	(lbf in) 45 +2,5 (398 ÷ 420)
MD	1" 1/4	32	58,7	30,2	M 10	20 +1	
MD	1 1/4	(1.26)	(2.31)	(1.19)	17 (0.67)	$(177 \div 186)$	_
ME	1" 1/0	38,1	69,8	35,7	M 12	30 +2,5	
ME	1" 1/2	(1.50)	(2.75)	(1.41)	20 (0.79)	$(266 \div 288)$	_
BAE	O"	51	77,8	42,9	M 12	30 +2,5	
MF	2"	(2.01)	(3.06)	(1.69)	20 (0.79)	$(266 \div 288)$	_



BOCCHE FLANGIATE SAE J518 - Standard pressure series 3000 psi - Codice 61

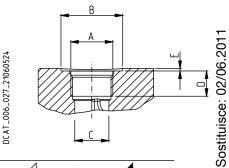
SSS

Filettatura americana UNC-UNF 60° conforme a ANSI B 1.1

	CODICE	Dim.	A	В	C	D	5)	1
	CODICE	Nominale	mm	mm	mm	Filettatura	Nm	Nm
			(in)	(in)	(in)	Profondità mm (in)	(lbf in)	(lbf in)
	SB	3/4"	20	47,6	22,2	3/8 - 16 UNC-2B	_	30 +2,5
	OD	3/4	(0.79)	(1.87)	(0.87)	17 (0.67)		$(266 \div 288)$
	SC	1"	25,4	52,4	26,2	3/8 - 16 UNC-2B		35 +2,5
Ì	30	ı	(1.00)	(2.06)	(1.03)	17 (0.67)	_	$(310 \div 332)$
	SD	1" 1/4	32	58,7	30,2	7/16 - 14 UNC-2B	25 +1	
ì	עפ	1 1/4	(1.26)	(2.31)	(1.19)	17 (0.67)	$(221 \div 230)$	_
•	SE	1" 1/2	38,1	69,8	35,7	1/2 - 13 UNC-2B	30 +2,5	
	3E	1 1/2	(1.50)	(2.75)	(1.41)	20 (0.79)	$(266 \div 288)$	_
	SF	2"	51	77,8	42,9	1/2 - 13 UNC-2B	30 +2,5	
	ЭГ	۷	(2.01)	(3.06)	(1.69)	20 (0.79)	$(266 \div 288)$	

02/06.2011

DIMENSIONI BOCCHE


Coppia di seraggio per bocca lato bassa pressione

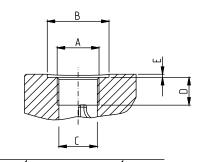
Coppia di seraggio per bocca lato alta pressione

BOCCHE FILETTATE SAE J514

ODT

Filettatura americana UNC-UNF 60° conforme a ANSI B 1.1

CODICE	Dim.	A	ØВ	Ø C	D	E	5)	1	_
CODICE	Nominale	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	Nm (lbf in)	Nm (lbf in)	_
03 (X)	1/4"	7/16" - 20 UNF - 2B	_	9,5 (0.37)	_	_	_	12 ⁺¹ (106 ÷ 115)	_
OB (●)	1/2"	3/4" - 16 UNF - 2B	33 (1.30)	17 (0.67)	_	1 (0.04)	20 ⁺¹ (177 ÷ 186)	_	_
0C (•)	- F (O)	7/0" 44 UNE OD	35 (1.38)	20,5 (0.81)	_	2 (0.08)	30 ^{+2,5} (266 ÷ 288)	_	_
0C (�)	5/8"	7/8" - 14 UNF - 2B	34 (1.34)	20,5 (0.81)	17 (0.67)	0,5 (0.02)	_	70 ⁺⁵ (620 ÷ 664)	_
OD	3/4"	1 1/16" - 12 UNF - 2B	_	_	20 (0.79)	_	_	120 ⁺¹⁰ (1062 ÷ 1151)	0
0F	1"	1 5/16" - 12 UNF - 2B	_	30,5 (1.20)	20 (0.79)	_	_	170 ⁺¹⁰ (1505 ÷ 1593)	_
OG	1" 1/4	1 5/8" - 12 UNF - 2B	_	_	20 (0.79)	_	70 ⁺⁵ (620 ÷ 664)	_	0
ОН	1" 1/2	1 7/8" - 12 UNF - 2B	_	45 (1.77)	20 (0.79)	_	100 ⁺⁵ (885 ÷ 929)	_	_


(X) = Bocca load sensing - (●) = Bocca di drenaggio - (◆) = KP20 / PHP20 bocca di uscita

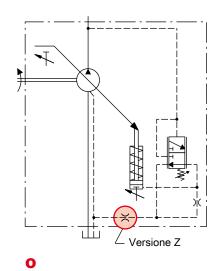
BOCCHE FILETTATE GAS

BSPP

DCAT_006_026_21064779

Filettatura GAS cilindrica (55°) conforme a UNI - ISO 228

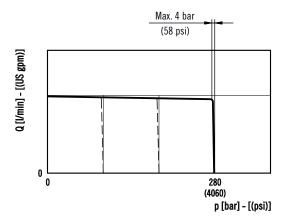
CODICE	Dim.	Α	ØВ	ØС	D	E	5)	1
CODICE	Nominale	mm	mm	mm	mm	mm	Nm	Nm
		(in)	(in)	(in)	(in)	(in)	(lbf in)	(lbf in)
GA (X)	1/8"	G 1/8		8,75	12		5 +0,25	5 +0,25
UA (A)	1/0	G 1/6		(0.34)	(0.47)			$(44 \div 46)$
CD (A)			30	19	17	2	20 +1	
GD (●)	- 4 (0.1)	0.4/0	(1.18)	(0.75)	(0.67)	(0.08)	(177 ÷ 186)	_
GD (◆)	1/2"	G 1/2	_	19 (0.75)	17 (0.67)	_	_	50 +2,5 (443 ÷ 465)
				(/	(/			


(X) = Bocca load sensing - (●) = Bocca di drenaggio - (♦) = KP20 / PHP20 bocca di uscita

COMPENSATORE DI PRESSIONE

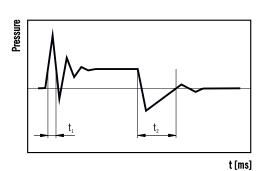
Adatta automaticamente la cilindrata della pompa in modo da mantenere la pressione sotto il valore di taratura impostato.

		0	
Compensatore	Pompa	Campo di taratura	Taratura standard
tipo	tipo -	bar	bar
	MVP30-28	80 ÷ 280	280
-	MVP30-34	80 ÷ 250	250
	MVP48-45	80 ÷ 280	280
RP0	MVP48-53	80 ÷ 250	250
	MVP60-60	80 ÷ 280	280
-	MVP60-72	80 ÷ 280	280
-	MVP60-84	80 ÷ 250	250


NOTE

Sostituisce: 02/06.2011

Per maggiori informazioni, consultare il nostro servizio prevendita.


CURVE CARATTERISTICHE

Le curve sono state ottenute alla velocità di 1500 min $^{\text{-}1}$ con olio alla temperatura di 50 $^{\circ}\text{C}.$

TEMPO DI RISPOSTA E DI RECUPERO

Conforme a SAE J745 (utilizzando pressione in uscita).

VERSIONE Z

Smorzatore per applicazioni gravose.

In caso di instabilità del sistema o di oscillazioni della pressione, lo smorzatore addizionale rallenta il sistema di controllo della pompa, attenuando i transitori di regolazione.

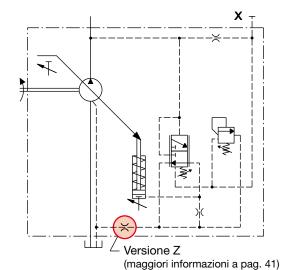
Il tempo di risposta in fase di regolazione della pompa aumenta. L'uso dello smorzatore deve essere valutato ed approvato dal nostro servizio prevendita per ogni specifica applicazione.

COMANDO A DISTANZA

Per compensatore di pressione con comando a distanza LS3 vedere pag. 46.

	t,	t ₂
Pompa tipo	Tempo di risposta [ms] (azzeramento cilindrata)	Tempo di recupero [ms] (rientro cilindrata)
MVP30	46	150
MVP48	48	150
MVP60	50	150

0 04/02.2021

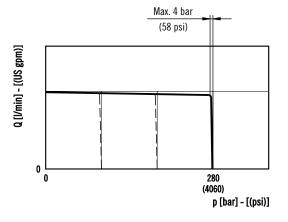


COMPENSATORE DI PRESSIONE

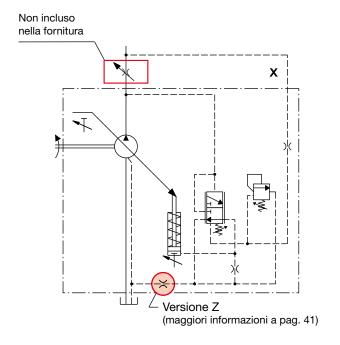
RP1

Adatta automaticamente la cilindrata della pompa in modo da mantenere la pressione sotto il valore di taratura impostato. Ideale per impieghi ad alta frequenza ≥ 1 ciclo/min e/o con taratura > 280 bar.

RP1



NOTE


X: Bocca load sensing. Dimensioni a pag. $38 \div 40$. Per maggiori informazioni, consultare il nostro servizio prevendita.

CURVE CARATTERISTICHE

Le curve sono state ottenute alla velocità di 1500 min $^{\text{-}1}$ con olio alla temperatura di 50 °C.

RP1 - LS2 (controllo portata)


04/02.202

COMPENSATORE DI PRESSIONE A DOPPIA TARATURA

Adatta automaticamente la cilindrata della pompa in modo da mantenere la pressione sotto i due valori di taratura impostati. La valvola comandata elettricamente permette il passaggio di funzionamento tra i due diversi valori di pressione.

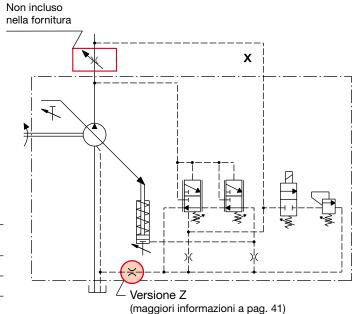
RP2

NOTE

Sostituisce: 03/01.2012

X: Bocca load sensing. Dimensioni a pag. $38 \div 40$. Connettore: Standard tipo DIN 43650.

Per altri connettori e per maggiori informazioni, consultare il nostro servizio prevendita.


CURVE CARATTERISTICHE

Le curve sono state ottenute alla velocità di 1500 $\rm min^{-1}$ con olio alla temperatura di 50 °C.

Max. 4 bar (58 psi)

p [bar] - [(psi)]

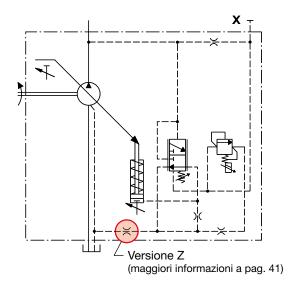
RP2 - LS2 (controllo portata)

CARATTERISTICHE DELLA VALVOLA O

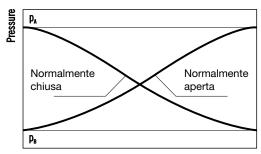
Codice valvola	Predisposizione	Volt
1	Normalmente chiusa	12 V DC
2	Normalmente chiusa	24 V DC
6	Normalmente aperta	12 V DC
7	Normalmente aperta	24 V DC

0 04/02.2021

COMPENSATORE DI PRESSIONE ELETTRO-PROPORZIONALE

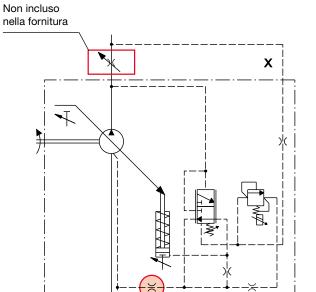

PEC

Adatta automaticamente la cilindrata della pompa in modo da mantenere la pressione sotto un valore di taratura variabile impostato con un segnale di corrente elettrica.


PEC

NOTE

X: Bocca load sensing. Dimensioni a pag. $38 \div 40$. Per maggiori informazioni, consultare il nostro servizio prevendita



CURVE CARATTERISTICHE

I / Imax

PEC - LS2 (controllo portata)

Versione Z

(maggiori informazioni a pag. 41)

CARATTERISTICHE DELLA VALVOLA

Codice valvola	Predisposizione	Volt
1	Normalmente chiusa	12 V DC
2	Normalmente chiusa	24 V DC
6	Normalmente aperta	12 V DC
7	Normalmente aperta	24 V DC

Connettore tipo	DIN 43650/		DEUTSCH DT04-2P	
Volt	12 V DC	24 V DC	12 V DC	24 V DC
Potenza	18 W	19 W	18 W	19 W
Resistenza @ 20 °C	8 Ω	30 Ω	8 Ω	30 Ω
Corrente max.	1500 mA	800 mA	1500 mA	800 mA
Frequenza di dither	200 Hz			
Temperatura di esercizio	-40 ÷ 100 °C			

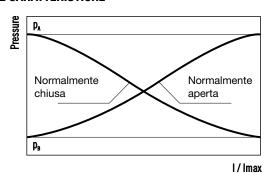
PECA

COMPENSATORE DI PRESSIONE ELETTRO-PROPORZIONALE E SENSORE ANGOLARE

Adatta automaticamente la cilindrata della pompa in modo da mantenere la pressione sotto un valore di taratura variabile impostato con un segnale di corrente elettrico. Il sensore angolare converte la posizione effettiva del piatto oscillante in un segnale di tensione in uscita che può essere utilizzato per diversi scopi.

Questo segnale e la valvola di massima pressione proporzionale permettono di realizzare le seguenti logiche di controllo tramite un'unità di controllo esterna:

- Limitatore di pressione massima variabile
- Regolatore di portata elettronico con taratura variabile (Load-sensing variabile)
- Limitatore di coppia elettronico con taratura variabile
- Limitatore di potenza
- · Controllo portata
- Modalità operative elettroniche

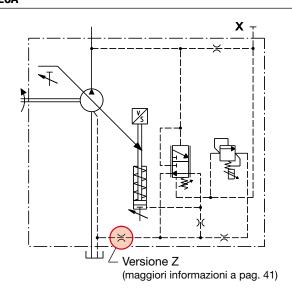

NOTE

Non disponibile con MVP30.

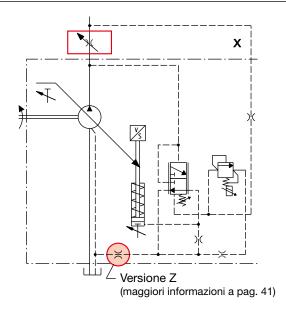
X: Bocca load sensing. Dimensioni a pag. 38 ÷ 40.

Per maggiori informazioni, consultare il nostro servizio prevendita

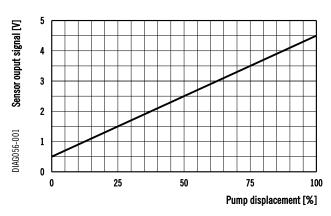
CURVE CARATTERISTICHE



CARATTERISTICHE DELLA VALVOLA


Codice valvola	Predisposizione	Volt
1	Normalmente chiusa	12 V DC
2	Normalmente chiusa	24 V DC
6	Normalmente aperta	12 V DC
7	Normalmente aperta	24 V DC

Connettore tipo	DIN 43650 DEUTSCH D			I DT04-2P
Voltaggio	12 V DC	24 V DC	12 V DC	24 V DC
Potenza W	18 W	19 W	18 W	19 W
Resistenza @ 20 °C	8 Ω	30 Ω	8 Ω	30 Ω
Corrente max.	1500 mA	800 mA	1500 mA	800 mA
Frequenza di dither	200 Hz			
Temperatura di esercizio	-40 ÷ 100 °C			
Sensore angolare connettore tipo	DEUTSCH DTM04-4P			


PECA

PECA - LS2 (controllo portata)

SENSORE ANGOLARE

DCAT048-ID01

0 04/02.2021

45

Sostituisce: 03/01.2012

REGOLATORE DI PORTATA (Load-sensing)

Regola la cilindrata della pompa in modo da mantenere costante (indipendente dal carico) la caduta di pressione attraverso una valvola o uno strozzatore. Nell'allestimento standard al regolatore di portata è associato il compensatore di pressione.

Regolatore tipo	Regolatore di pressione	Campo di tara- tura pressione differenziale	Taratura standard
		bar	bar
LS0 (■)	RP0		
LS2 (♦)	RP0	12 ÷ 40	14
LS3 (•)	RP0	•	

- (■): Cosigliato quando il distributore non ha la funzione bleed.
- (lacktriangle): Y tappato. Cosigliato quando il distributore ha la funzione bleed.
- (●) :Per contollo della pressione a distanza.

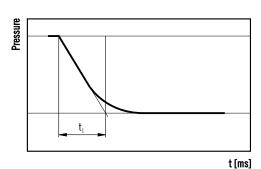
Portata di pilotaggio ≈ 1,3 ÷ 1,5 l/min

In condizione di taratura standard 14 bar la pressione di stand-by è $15^{\pm 2}$ bar

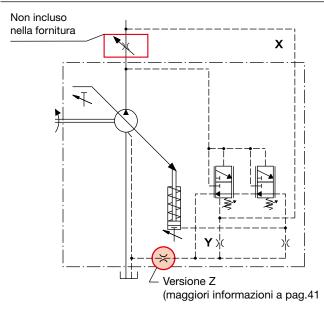
NOTE

X: Bocca load sensing. Dimensioni a pag. 38 ÷ 40. Disponibile senza compensatore di pressione RP. Per maggiori informazioni, consultare il nostro servizio prevendita.

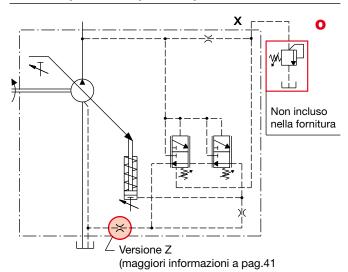
CURVE CARATTERISTICHE


Le curve sono state ottenute alla velocità di 1500 min⁻¹ con olio alla temperatura di 50 °C.

Curve con velocità di rotazione variabile



TEMPO DI RISPOSTA


Conforme a SAE J745 (utilizzando la pressione in mandata).

LS0 (Bleed aperto) - LS2 (Bleed chiuso)

LS3 - Compensatore di pressione per comando a distanza

 ΔQ max

 Pompa tipo
 I/min

 MVP 30
 0,9

 MVP 48
 1,7

 MVP 60
 2,5

	Կ	
Pompa tipo	Tempo di risposta [ms] (azzeramento cilindrata)	
MVP 30	120	
MVP 48	120	
MVP 60	120	

Conforme a SAE J745 (utilizzando pressione in uscita).

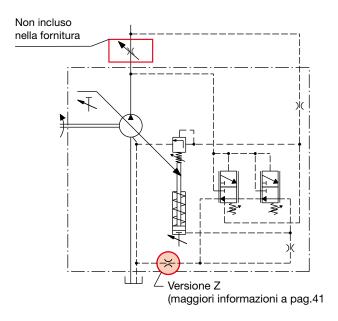
46 DCAT048-ID01

4/02.2021

LIMITATORE DI COPPIA

Adatta la cilindrata della pompa in funzione della pressione, in modo che la coppia assorbita non superi il valore impostato e il motore sia protetto dai sovraccarichi. Per avere un funzionamento ottimale del regolatore di coppia, il valore impostato per la coppia assorbita deve essere superiore a quanto indicato nella seguente tabella.

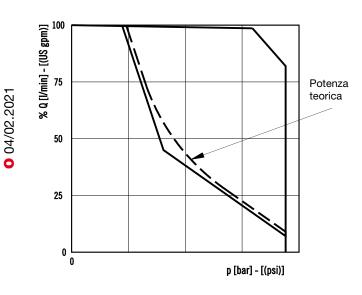
Pompa	Coppia Min.	Potenza Min. (●)
tipo _	Nm	kW
MVP30	45	7.1
MVP48	61	9.6
MVP60	97	15.2


^{(•) @ 1500} min⁻¹

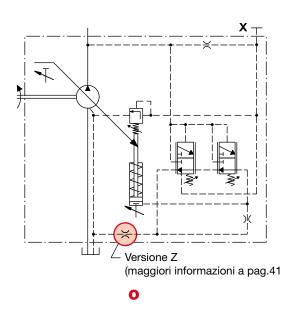
Sostituisce: 03/01.2012

Per valori inferiori, il regolatore di coppia limita la pressione massima di funzionamento ad un valore inferiore a quello di taratura standard del regolatore di pressione (280 bar). Quando si ordina il limitatore di coppia prego indicare i valori della coppia (es. 70 Nm) oppure della potenza e della velocità richiesti (es. 10 kW a 1500 min⁻¹).

RNO - Standard


Limitazione della coppia per distributori a centro chiuso.

NOTE


X: Bocca load sensing. Dimensioni a pag. $38 \div 40$. Disponibile senza compensatore di pressione RP. Per maggiori informazioni, consultare il nostro servizio prevendita.

CURVE CARATTERISTICHE

RN1 - Pilotaggio interno

Limitazione della coppia per distributori a centro aperto.

LIMITATORE DI COPPIA A DOPPIA TARATURA

RN2

Adatta automaticamente la cilindrata della pompa in modo da mantenere la coppia sotto i due valori di taratura impostati. La valvola comandata elettricamente permette il passaggio di funzionamento tra i due diversi valori di coppia.

RN2-LS0 / RN2-LS2


Per configurazione LS2 Y è tappato.

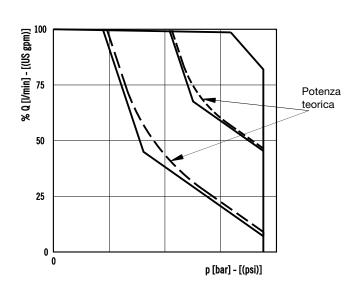
Pompa	Coppia Min.	Potenza Min. (●)
tipo	Nm	kW (HP)
MVP30	45	7.1
MVP48	61	9.6
MVP60	97	15.2

(•) @ 1500 min⁻¹

Per valori inferiori, il regolatore di coppia limita la pressione massima di funzionamento ad un valore inferiore a quello di taratura standard del regolatore di pressione (280 bar).

Quando si ordina il limitatore di coppia prego indicare i valori della coppia (es. 70 Nm) oppure della potenza e della velocità richiesti (es. 10 kW a 1500 min⁻¹

NOTE


X: Bocca load sensing. Dimensioni a pag. 38 ÷ 40. Per maggiori informazioni, consultare il nostro servizio prevendita.

CARATTERISTICHE DELLA VALVOLA

Codice Volt Predisposizione valvola 1 12 V DC Normalmente chiusa 2 24 V DC Normalmente chiusa 6 12 V DC Normalmente aperta 7 Normalmente aperta 24 V DC

0

CURVE CARATTERISTICHE

48 DCAT048-ID01

04/02.2021

LIMITATORE DI COPPIA PER ALTE PRESTAZIONI

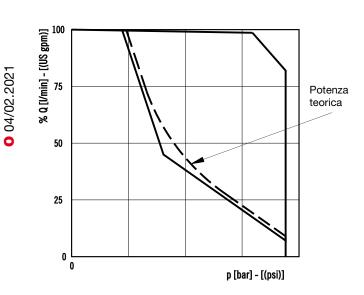
Regola la cilindrata della pompa in base alla pressione del sistema, al fine di mantenere costante il valore di taratura di coppia e proteggere il motore dal sovraccarico.

Questa versione è ottimizzata per sistemi LS. Con il regolatore di coppia standard RN0, in caso ci sia un'alta portata attraverso la valvola LS, la coppia assorbita dalla pompa può essere leggermente inferiore rispetto a quella di taratura, con il risultato di avere una portata minore. La versione RN3 garantisce il valore di coppia preimpostato anche in caso ci sia un'alta portata attraverso la valvola LS.

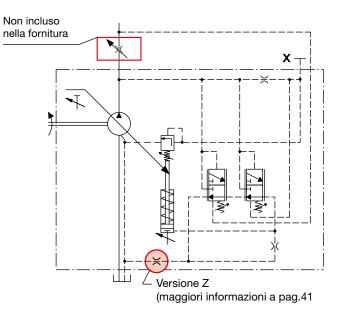
Per avere una migliore regolazione di coppia, il valore impostato per la coppia assorbita deve essere superiore a quanto indicato nella seguente tabella.

Pompa	Coppia Min.	Potenza Min. (●)
tipo	Nm	kW
MVP30	45	7.1
MVP48	61	9.6
MVP60	97	15.2

(•) @ 1500 min⁻¹


Per valori inferiori, il regolatore di coppia limita la pressione massima di funzionamento ad un valore inferiore a quello di taratura standard del regolatore di pressione (280 bar).

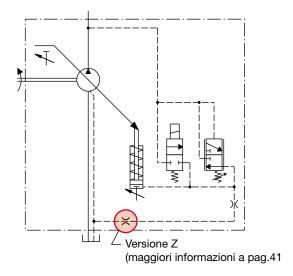
Quando si ordina il limitatore di coppia prego indicare i valori della coppia (es. 70 Nm) oppure della potenza e della velocità richiesti (es. 10 kW a 1500 min⁻¹).

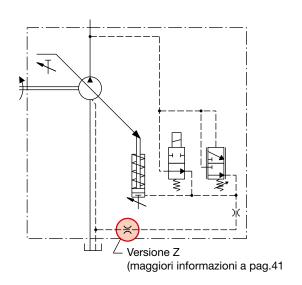

NOTE

X: Bocca load sensing. Dimensioni a pag. 38 ÷ 40. Disponibile con o senza compensatore di pressione RP. Per maggiori informazioni, consultare il nostro servizio prevendita.

CURVE CARATTERISTICHE

RN3 - Versione speciale




VALVOLA DI MESSA A SCARICO

U ..

NC (normalmente chiusa)

NA (normalmente aperta)

Nel caso di valvola tipo NC (normalmente chiusa), dando tensione si azzera la cilindrata mandando a scarico la pompa.

Nel caso di valvola tipo NA (normalmente aperta), dando tensione si manda la pompa alla cilindrata massima.

NOTE

Disponibile senza compensatore di pressione RP.

Connettore tipo: DIN 43650.

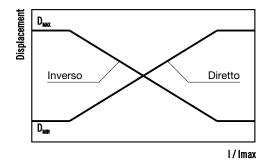
Per maggiori informazioni, consultare il nostro servizio preven-

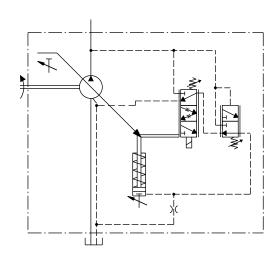
dita.

CARATTERISTICHE DELLA VALVOLA O

Codice valvola	Predisposizione	Volt
U1	Normalmente chiusa	12 V DC
U2	Normalmente chiusa	24 V DC
U6	Normalmente aperta	12 V DC
U7	Normalmente aperta	24 V DC

04/02.2021




COMPENSATORE DI CILINDRATA ELETTRO-PROPORZIONALE

Adatta automaticamente la cilindrata della pompa in modo da mantenerla sotto un valore di taratura variabile impostato con un segnale di corrente elettrico.

DEC

CURVE CARATTERISTICHE

CARATTERISTICHE DELLA VALVOLA

Codice valvola	Predisposizione	Volt
1	Inverso	12 V DC
2	Inverso	24 V DC
6	Diretto	12 V DC
7	Diretto	24 V DC

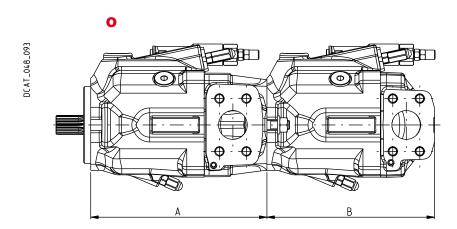
Connettore tipo	DIN 4	3 650	DEUTSCH DT04-2P		
Volt	12 V DC	12 V DC 24 V DC		24 V DC	
Potenza	33 W		33 W		
Resistenza @ 20 °C	4,4 Ω	17,4 Ω	4,3 Ω	17,5 Ω	
Corrente max.	1700 mA	850 mA	1700 mA	850 mA	
Frequenza di dither	150 Hz		150 Hz		
Temperatura di esercizio	-40 ÷ 1	00 °C	-40 ÷ 100 °C		

NOTE

12/06.2011

POMPE MULTIPLE CON PRESA DI MOTO PASSANTE

PRESA DI MOTO PASSANTE


Le pompe a pistoni MVP con presa di moto passante permettono di ottenere gruppi combinati in grado di alimentare più circuiti idraulici fra loro indipendenti. Le caratteristiche e le prestazioni di ogni unità sono le stesse delle pompe singole corrispondenti, nel rispetto delle seguenti condizioni:

- Sostituisce: 02/06.2011 Non deve essere superata la coppia massima trasmissibile.
 - La velocità massima di rotazione è determinata dalla inferiore tra le velocità delle singole unità.

М	Nm	Coppia
V	cm³/giro	Cilindrata
Δр	bar	Pressione
$\eta_{hm} = \eta_{hm}$, (V, Δp, n)	Rendimento idro-meccanico

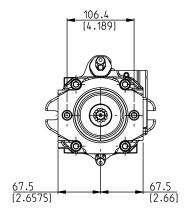
$$\mathbf{M} = \frac{\Delta p \text{ (bar)} \cdot \text{V (cm}^3/\text{giro)}}{62,83 \cdot \eta_{\text{hm}}}$$
 [Nm]

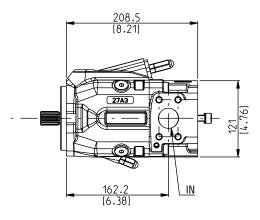
Nota: La coppia assorbita dall'albero della prima pompa è data dalla somma delle coppie di tutte le pompe. Il valore così ottenuto non deve superare quello massimo ammesso dal tipo di albero prescelto per la prima pompa.

- A: Sezione anteriore (presa di moto passante)
- Pompa posteriore MVP (la stessa della pompa singola con bocche laterali o posteriori) Sono disponibili anche pompe posteriori ad ingranaggi, vedere i rispettivi cataloghi tecnici.

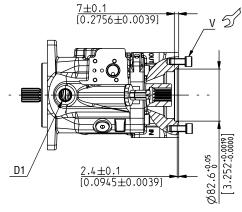
-		Α	
04/02.202	Pompa tipo	Flangiata per	Codice
<u>+</u>	MVP30	SAE A	AS1
	WIVPOU	SAE B	AS5
	MVP48	SAE B	AS5
	MVP60	SAE B	AS5

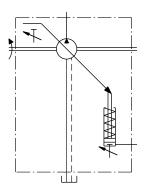
0 04/02 2021

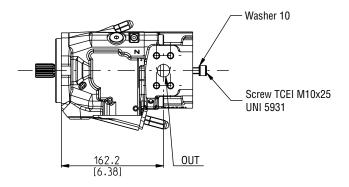



DIMENSIONI - SEZIONE ANTERIORE

AS₁

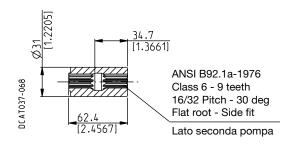

Presa di moto passante SAE A


Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40 Il disegno mostra una sezione anteriore con senso di rotazione destro



DCAT_048_103

Coppia di serraggio viti Nm (lbf in)

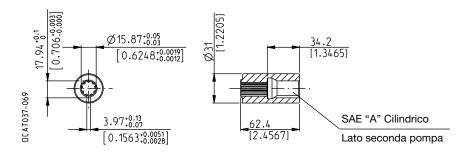

 00	`	,	
V			
70 ^{±7} (558 ÷ 6			

DIMENSIONI - GIUNTI A MANICOTTO

SAE "A" SCANALATO

03

Compatibile con la flangia codice AS1



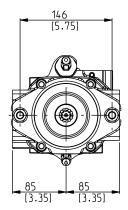
MAX 100 Nm (885 lbf in)

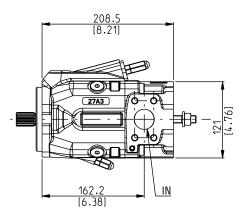
SAE "A" CILINDRICO

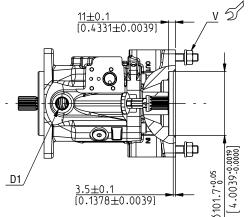
31

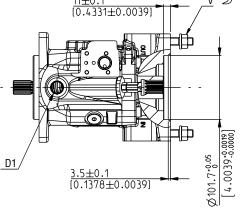
Compatibile con la flangia codice AS1

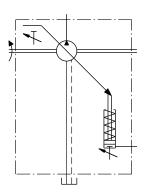
MAX 70 Nm (620 lbf in)

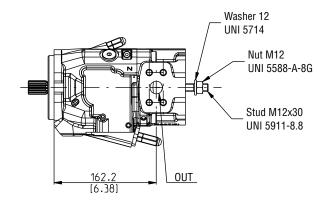

DIMENSIONI - SEZIONE ANTERIORE


AS5


Presa di moto passante SAE B


Alberi di trascinamento: pag. 32 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40

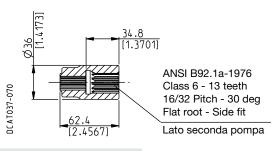

Il disegno mostra una sezione anteriore con senso di rotazione destro



Coppia di serraggio viti Nm (lbf in)

 	•	
V		
100 ±10		
(797 ÷ 97	74)	

56

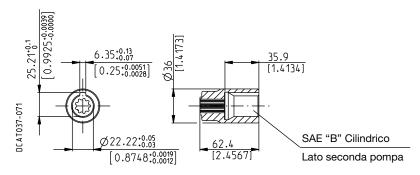

DIMENSIONI - GIUNTI A MANICOTTO

AS₅

SAE "B" SCANALATO

04

Compatibile con la flangia codice AS5



MAX 100 Nm (885 lbf in)

SAE "B" CILINDRICO

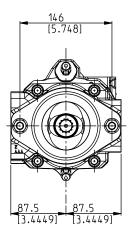
32

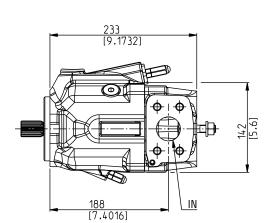
Compatibile con la flangia codice AS5

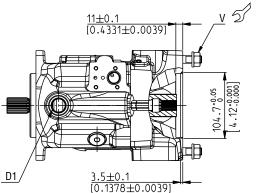
MAX 100 Nm (885 lbf in)

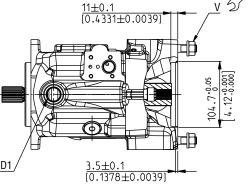
0 04/02.2021

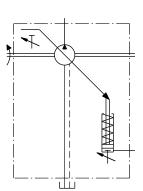
DIMENSIONI - SEZIONE ANTERIORE

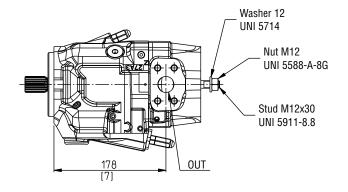

0


AS₅


Presa di moto passante SAE B


Alberi di trascinamento: pag. 33 Flange di montaggio: pag. 36 Bocche: pag. 38 ÷ 40


Il disegno mostra una sezione anteriore con senso di rotazione destro



DCAT_048_038

Coppia di serraggio viti Nm (lbf in)

• • •		•	
	V		
	100 ±10		
	(797 ÷ 97	74)	

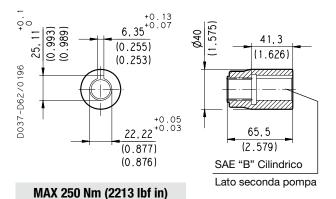
58

DIMENSIONI - GIUNTI A MANICOTTO

04

SAE "B" SCANALATO

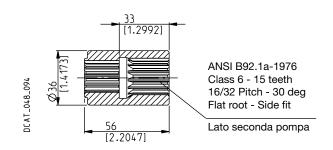
Compatibile con la flangia codice AS5


ANSI B92.1a-1976
Class 6 - 13 teeth
16/32 Pitch - 30 deg
Flat root - Side fit
Lato seconda pompa

MAX 200 Nm (1770 lbf in)

0

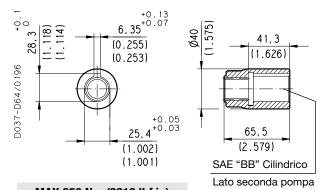
SAE "B" CILINDRICO 32


Compatibile con la flangia codice AS5

SAE "BB" SCANALATO

05

Compatibile con la flangia codice AS5



MAX 250 Nm (2213 lbf in)

SAE "BB" CILINDRICO

33

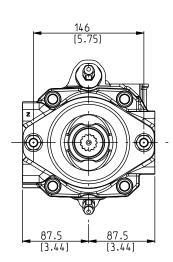
Compatibile con la flangia codice AS5

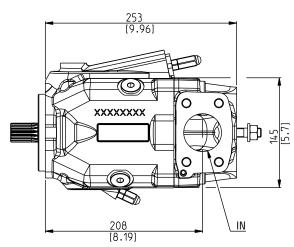
MAX 250 Nm (2213 lbf in)

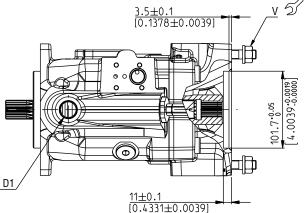
0

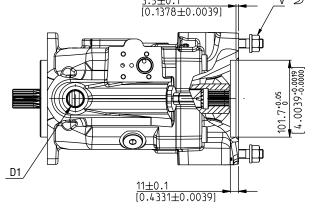
0 04/02.2021

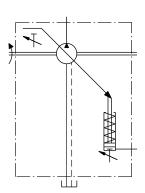
DIMENSIONI - SEZIONE ANTERIORE

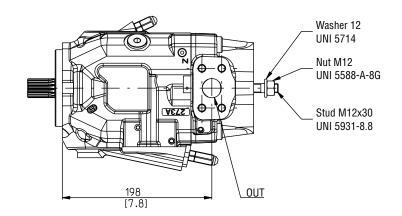

AS₅


Presa di moto passante SAE B


Alberi di trascinamento: pag. 34 ÷ 35 Flange di montaggio: pag. 36 ÷ 37 Bocche: pag. 38 ÷ 40


0


Il disegno mostra una sezione anteriore con senso di rotazione destro



Coppia di serraggio viti Nm (lbf in)

 	· · · · · · · · · · · · · · · · · · ·
V	
100 ±10	
(797 ÷ 974)

60

Sostituisce: 02/06.2011

DIMENSIONI - GIUNTI A MANICOTTO

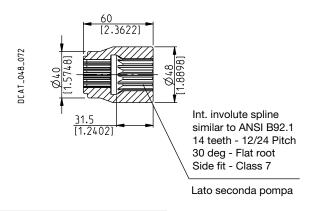
04

Lato seconda pompa

06

SAE "B" SCANALATO

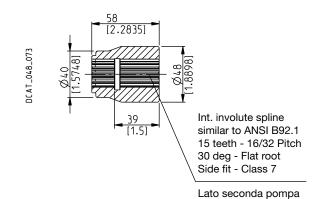
Compatibile con la flangia codice AS5


| 1.0827| | Int. involute spline similar to ANSI B92.1 | 13 teeth - 16/32 Pitch 30 deg - Flat root Side fit - Class 7

MAX 200 Nm (1770 lbf in)

0

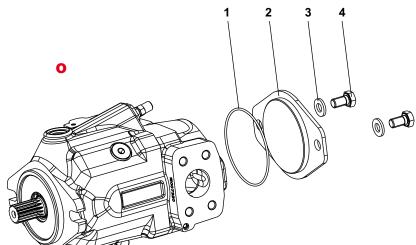
SAE "C" SCANALATO


Compatibile con la flangia codice AS5

MAX 430 Nm (3806 lbf in)

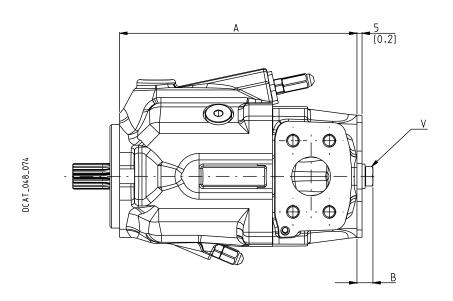
SAE "BB" SCANALATO 05

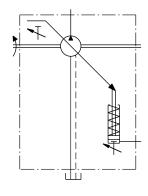
Compatibile con la flangia codice AS5


MAX 250 Nm (2213 lbf in)

0

0 04/02.2021


KIT DI CHIUSURA PRIMA POMPA


I kit di chiusura permettono di trasformare le sezioni anteriori di pompe multiple in pompe singole. Assicurarsi di rimuovere il giunto a manicotto prima di chiudere la flangia intermedia.

Contenuto del kit

- 1 Guarnizione
- 2 Flangia di chiusura
- 3 Rosette
- 4 Viti

0 04/02.2021

-	-	ı	

	S	Kit di chiusura			
Pompa	Flangiata	Codice	Α	В	Codice
tipo	per	Codice	mm (in)	mm (in)	Codice
MVP30	SAE A	AS1	209	14	62100006
	O/ 1 / 1	,	(8.2283)	(0.5512)	02.0000
MVP30	_		209 (8.2283		
MVP48	SAE B	AS5	233 (9.1732)	16 (0.6299)	62100007
MVP60	_		253 (9.9606)	_	

Coppia di serraggio viti Nm (lbf in)

V	
20 ±1	
 (159 ÷ 195)	

NOTE

04/02.2021

COME ORDINARE POMPE SINGOLE

1	2		3	4		5	6		7		8
MVP30-28	S	-	04	S 5	-	L	MD/MB	-	N	-	

1 Pompa tipo (cilindrata max.)	Codice
28 cm³/giro	MVP 30-28
34,8 cm³/giro	MVP 30-34
45 cm³/giro	MVP 48-45
53,7 cm³/giro	MVP 48-53
60 cm³/giro	MVP 60-60
72 cm³/giro	MVP 60-72
84,7 cm³/giro	MVP 60-84

2	Rotazione	Codice
Sinistra		S
Destra		D

3 O Albero di trascinamento (a)	Codice
SAE "B" scanalato (13 denti)	04
SAE "B" scanalato (13 denti)	4R
SAE "B" cilindrico	32
SAE "BB" scanalato (15 denti)	05
SAE "BB" scanalato (15 denti)	5R
SAE "C" scanalato (14 denti)	06
SAE "C" scanalato (14 denti)	6R
SAE "C" cilindrico	34

4	0	Flangia di montaggio (a)	Codice
SAE	"B" 2 fori		S5
SAE	"C" 2 fori		S7
SAE	"C" 4 fori		\$8

5	Posizione bocche	Codice
Laterali		L
Posteriori		Р

Codice	Boco	che ingresso/us	cita 6	6			
	Dimension	Dimensione nominale					
	Ingresso IN	Uscita OUT	Pompa tipo				
	SAE 3000	SAE 3000					
FLANGIATE SAE CON FILETTATURA METRICA (SSM)							
MD/MB	1" 1/4	1" 1/4 3/4" MVP 30					
ME/MC	1" 1/2 1" MVP 48						
MF/MC	2" 1" MVP 60						
FLANGIATE SAE CON FILETTATURA UNC (SSS)							
SD/SB	1" 1/4 3/4" MVP 30						
SE/SC	1" 1/2	1" 1/2 1" MVP 48					
SF/SC	2"	2" 1" MVP 60					
	FILETTA	ATE SAE (ODT)					
0G/0D (b)	1" 1/4	3/4"	MVP 30				
OH/OF (b)	1" 1/2	1"	MVP 48				
MF/OF	2"	1"	MVP 60				

	Codice	Guarnizioni	7
	N	Buna (standard)	
	V	Viton	
Γ	0 "	Dl.td	0

Codice	Regolatori	8	
	Vedere come ordinare a pag. 65 ÷ 67		

- a) Disponibilità alberi di trascinamento: pag. 32 ÷ 35 Disponibilità flange di montaggio: pag. 36 ÷ 37
- (b) Solo per bocche posteriori

04/02.2

COME ORDINARE - REGOLATORI

COMPENSATORI DI PRESSIONE - REGOLATORI DI PORTATA (Load-sensing)

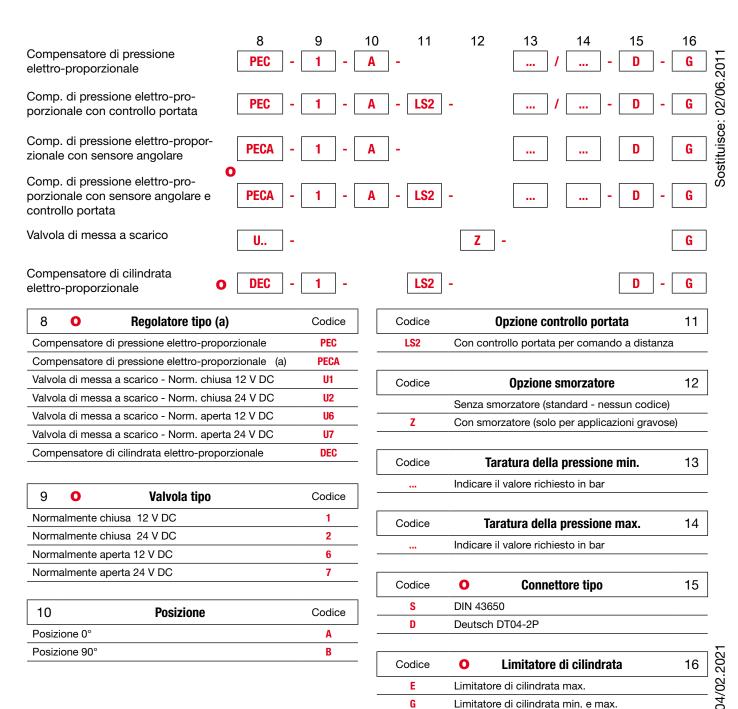
_		8		9		10		11		12		13
02/06.201	Compensatore di pressione	RP0	-					Z	_			G
_	Compensatore di pressione	RP1] -					Z	_			G
Sostituisce:	Compensatore di pressione con controllo portata	RP1] -			LS2] - [Z	_			G
တိ	Compensatore di pressione a doppia taratura	RP2	- [1	_			Z] - [S	_	G
	Compensatore di pressione a doppia taratura con controllo portata	RP2] - [1		LS2] - [Z	- [S	_	G
	Regolatore di portata	LS0] -					Z	_			G
	Regolatore di portata per comando a distanza	LS2] -					Z	_			G
	Compensatore di pressione per comando a distanza	LS3] -					Z	_			G

8	Regolatori tipo	Codice
Compensato	RP0	
Compensato	RP1	
Compensato	RP2	
Regolatore of	LS0	
Regolatore of	LS2	
Compensato za	ore di pressione per comando a distan-	LS3

	9	0	Valvola tipo	Codice	
Σ.	Norm	nalmente	chiusa 12 V DC	1	
.202	Normalmente chiusa 24 V DC 2				
2	Normalmente aperta 12 V DC 6				
34/02	Normalmente aperta 24 V DC 7				
0					

Codice	Opzione controllo portata	10
LS2	Con controllo portata	
Codice	Opzione smorzatore	11
	Senza smorzatore (standard - nessun codice)	
Z	Con smorzatore (solo per applicazioni gravose)	
Codice	Connettore tipo	12
S	DIN 43650 (standard)	
D	Deutsch DT04-2P	
	Limitatore di cilindrata	13
Codice	O Limitatore di cilindrata	13
Codice	Limitatore di cilindrata max.	13

ESEMPIO D'ORDINE


MVP60 con compensatore di pressione a doppia taratura:

MVP60.60S-05S5-LMF/MC-N-RP2-1-S-G

COME ORDINARE - REGOLATORI

COMPENSATORE DI PRESSIONE ELETTRO-PROPORZIONALE - VALVOLA DI MESSA A SCARICO

(a) PECA: non disponibile con MVP 30

ESEMPIO D'ORDINE

MVP60 con compensatore di pressione elettro-proporzionale con controllo portata:

MVP60.60S-05S5-LMF/MC-N-PEC-1-A-LS2-100/300-D-G

COME ORDINARE - REGOLATORI

LIMITATORI DI COPPIA

02/06.2011 Limitatore di coppia - standard

Limitatore di coppia - pilotaggio interno

Limitatore di coppia a doppia taratura con controllo portata

Limitatore di coppia a doppia taratura con controllo portata per comando a distanza

Limitatore di coppia per alte prestazioni

8	9
RNO	-

10 11

12 13 Z G

14

15

16

RN1 Z G

RN2 LS₀

RN2

RN3

8	0	Regolatori tipo	Codice		
Limita	RN0				
Limitatore di coppia - pilotaggio interno RN1					
Limita	atore di co	oppia a doppia taratura con controllo	RN2		

portata Limitatore di coppia per alte prestazioni RN3

9	0	Valvola tipo	Codice
Norm	nalmente	chiusa 12 V DC	1
Norm	nalmente	chiusa 24 V DC	2
Norm	nalmente	aperta 12 V DC	6
Norn	nalmente	aperta 24 V DC	7

10	0	Connettori tipo	Codice
DIN 4	3650	(standard)	S
Deuts	ch D1	⁻ 04-2P	D

Codice	Opzione controllo portata	11
LS0	Con controllo portata	
LS2	Con controllo portata per comando a distanza	

Codice	Opzione smorzatore	12
	Senza smorzatore (standard - nessun codice)	
Z	Con smorzatore (solo per applicazioni gravose)	

Codice	O Limitatore di cilindrata	13				
E	E Limitatore di cilindrata max.					
G	Limitatore di cilindrata min. e max.					

Codice	Taratura della coppia (a)	14
	Indicare il valore di coppia in Nm	

Codice	Seconda taratura della coppia (a)	15
	Indicare il valore di coppia in Nm	

Codice	Taratura della velocità (b)	16
	Indicare il valore della velocità	

ESEMPIO D'ORDINE

MVP60 con limitatore di coppia a doppia taratura con controllo portata:

MVP60.60S-05S5-LMF/MC-N-RN2-1-S-LS0-Z-G-150/200/2100

- (a) Per maggiori informazioni vedere pag 47 \div 49
- Non superare i valori di velocità max. riportati a pag. $7 \div 9$

0 04/02.2021

Sostituisce: 02/06.2011

COME ORDINARE POMPE MULTIPLE - PISTONI / INGRANAGGI

Aspirazione comune

1	2		3	4		5	6		7		8		9		10		7		11	12		13		14	
MVP30-28	S	-	04	S5	-	L	MD/MB	-	N	-		-	G	-	P7			-	Α	(#	/	#	1	#)	1
										Se	zione an	terio	re												
KP20-6,3	S	-			-	L	**/GD	-							N5	-	N	-	P						
Sezione posteriore																									

1 Pompa tipo (cilindrata max.)	Codice
Sezione anteriore - La stessa delle pompe singole	MVP
Sezione posteriore pompe a ingranaggi KAPPA 20 (a)	KP 20
Sezione posteriore pompe a ingranaggi POLARIS PH (b)	PHP 20
2 Rotazione	Codice
Sinistra	S
Destra	D

3 O Albero di trascinamento (c)	Codice
SAE "B" scanalato (13 denti)	04
SAE "B" scanalato (13 denti)	4R
SAE "B" cilindrico	32
SAE "BB" scanalato (15 denti)	05
SAE "BB" scanalato (15 denti)	5R
SAE "C" scanalato (14 denti)	06
SAE "C" scanalato (14 denti)	6R
SAE "C" cilindrico	34

4	0	Flangia di montaggio (c)	Codice
SAE	"B" 2 fori		S5
SAE	"C" 2 fori		S7
SAE	"C" 4 fori		S8

5	Posizioni bocche	Codice
Laterali		L

Bocche ingresso/uscita (a) - (b)

6

		Dimension	e nominale	
	Pompa tipo	ingresso IN	Uscita OUT	
		SAE 3000	SAE 6000	
	FLANGIATI	SAE CON FILETTA	TURA METRICA (S	SM)
_	MVP 30	1" 1/4	3/4"	MD/MB
	MVP 48	1" 1/2	1"	ME/MC
	MAN / D. CO	O"	1" 1/4	845/840

Codice	Boco	che ingresso/us	cita	6				
	Dimension	e nominale						
	ingresso IN	ingresso IN Uscita OUT						
	SAE 3000	SAE 3000						
	FLANGIATE SAE CO	N FILETTATURA UN	C (SSS)					
SD/SB	1" 1/4	3/4"	MVP 30					
SE/SC	1" 1/2	1"	MVP 48					
SF/SC	2"	1"	MVP 60					
	FILETTA	ATE SAE (ODT)						
	_	_	MVP 30					
	_	_	MVP 48					
MF/OF	2"	1"	MVP 60					

Codice	Guarnizioni	7
N	Buna (standard)	
V	Viton	

Codice	Regolatori	8
	Vedere come ordinare a pag. 65 ÷ 67	

Codice	O Limitatore di cilindrata	9			
E	E Limitatore di cilindrata max.				
G	G Limitatore di cilindrata min. e max.				

Codice Flangia intermedia						
SEZIONE ANTERIORE						
Flangiata per KP20						
Flangiata per PHP20						
SEZIONE POSTERIORE						
Kappa 20 (aspirazione comune)						
Polaris PHP 20 (aspirazione comune	e)					
	SEZIONE ANTERIORE Flangiata per KP20 Flangiata per PHP20 SEZIONE POSTERIORE					

Codice	0	Sezioni	11
Α	Anteriore		,
Р	Posteriore		

68 DCAT048-ID01

Codice

Sostituisce: 02/06.2011

COME ORDINARE POMPE MULTIPLE - PISTONI / INGRANAGGI

Codice	Taratura della coppia (#)	12
	Indicare il valore di coppia in Nm	
Codice	Seconda taratura della coppia (#)	13
	Indicare il valore di coppia in Nm	
Codice	Taratura della velocità (#)	14
	Indicare il valore della velocitàe	

C

- Codici da tralasciare nell'ordine di pompe multiple assemblate.
 - (#) Solo per limitatori di coppia. Per maggiori informazioni vedere pag.67. Riportare questi codici alla fine solo nell'ordine di pompe multiple assemblate.
 - (a) Pompe a ingranaggi KAPPA 20: cilindrate a pag. 22, 26 e 30. Per maggiori informazioni, consultare il nostro servizio prevendita.
 - (b) Pompe a ingranaggi POLARIS PH: cilindrate a pag. 23, 27 e 31. Per maggiori informazioni, consultare il nostro servizio prevendita.
 - (c) Disponibilità alberi di trascinamento pag. 32 ÷ 35. Flangie di montaggio pag. 36 ÷ 37.

ESEMPIO D'ORDINE

Pompa doppia MVP 60 / PHP20 con aspirazione comune e limitatore di coppia RN1 con pilotaggio interno.

SEZIONI SEPARATE

Sezione anteriore

MVP 60.60S-06S8-LMF/MC-N-RN1-G-I7-A (100/2500)

Sezione posteriore

PHP 20.23S-L **/GD-S7-N-P

POMPA DOPPIA ASSEMBLATA

MVP 60.60S-06S8-LMF/MC-N-RN1-G/PHP 20.23-L**/GD (100/2500)

0 04/02.2021

COME ORDINARE POMPE MULTIPLE - PISTONI/PISTONI

Presa di moto pa	ssante									0													
1 :	2	3	4		5	6		7		8		9		10		11		12		13		14	
MVP 60-60	s -	05	S5	_	L	MF/MC	_	N	_		_	G	-	AS5	-	04	-	(#	/	#	1	#)	7
						Sezione a	nterio	re (pr	esa d	li moto	passa	nte)					_						_
	_																						_
MVP 30-28	S -	04	S5			MD/MB	-	N	-		-	G	-		-		-		/				
						Sezior	e pos	terioi	e (po	mpa sii	igoia)												_
1 Pon	ıpa tipo	o (cilii	ndrata	a ma	x.)	C	odice			Co	dice				Boco	he i	ngre	esso/	usci	ta			6
Sezione anteriore	MVP						IVP		J L					Dimer	nsion	e nor	nina	le					
(la stessa delle po		ngole)	(a)				IVF							gresso				OUT		Po	mpa	tipo	
Sezione posterior (la stessa delle po		naole)	(2)			N	IVP		-				S	AE 300			AE (
(la stessa delle po	nipe sii	i igole)	(a)						-						LEI I/	ATE S	AE (U	(וטי			1VP	30	
2	R	otazio	one			С	odice	Э	-												1VP		
Sinistra							S		- ا	M	F/OF			2"			1"				1VP		
Destra							D		-														
									ı [Co	dice					Gu	arni	zioni					7
	ero di 1		name	nto (D)		odice				N		Bur	na (stai	ndard	d)							
SAE "B" scanalat							04				٧		Vito	n n		<u> </u>							
SAE "B" scanalat		enti)					4R																
SAE "B" cilindrico		-l L :\					32		. [Co	dice					Re	aola	atori					8
SAE "BB" scanala							05 5R		. L				Ved	lere co	me c				65 ÷	67			
SAE "C" scanalat							06											19-					
SAE "C" scanalat	•						6R		. [Co	dice		0		Limi	tato	re d	i cilin	drat	a			9
SAE "C" cilindrico							34		. [E		Lim	itatore									_
									· - 1		G			itatore					max				
4 O FI	angia (di mor	ntaggi	io (b)	C	odice	Э	-														
SAE "B" 2 fori							S5		. [С	ode				Flar	ngia i	inte	rmed	ia (c	:)			10
SAE "C" 2 fori							S7		. L	-	S1		SAE	E "A" 2									
SAE "C" 4 fori							S8				S5			E "B" 2									
5	Posiz	ione l	bocch	e			odice] -														
Laterali	1 0012						L] [Co	dice				Giur	nto a	ma	nicot	to (c	l)			11
									. L		03		SAE	E "A" s	cana	lato ((9 de	enti)					
6 B	ocche	ingres	sso/us	scita		С	odice	Э	-		31		SAE	E "A" c	ilindr	ico							
		Dime	ensione	e nor	ninale)			, -		04		SAE	E "B" s	cana	lato ((13 c	lenti)					
Pompa tipo		igresso SAE 30			cita C AE 60				_		32		SAE	E "B" c	ilind	rico							
FI ANG						CA (SSM)				ı	05		SAE	E "BB"	scar	nalato	(15	dent	i)				
MVP 30	JAL	1" 1/4			3/4"		ID/MB	3			33			E "BB"									
MVP 48		1" 1/2			1"		IE/MC		-	-	06		SAE	E "C" s	cana	lato	(14 c	denti)					
MVP 60		2"			1" 1/4		IF/MC		Г														
FLAI	NGIATE S	AE CON	I FILET	TATU	RA UNG	C (SSS)				Co	dice			1	arat	ura (della	а сор	pia ((#)			12
MVP 30		1" 1/	4		3/4"	8	D/SB		· 				Indi	care il	valo	re di	copp	oia in	Nm				
MVP 48		1" 1/2	2		1"		SE/SC																
MVP 60		2"			1"	9	SF/SC																

COME ORDINARE POMPE MULTIPLE - PISTONI/PISTONI

Codice	Seconda taratura della coppia (#)	13
	Indicare il valore di coppia in Nm	
Codice	Taratura della velocità (#)	14
	Indicare il valore della velocità	

Codici da tralasciare nell'ordine di pompe multiple assemblate Solo per limitatori di coppia. Per maggiori informazioni vedere

- (a) Cilindrate a pag. 64.
- (b) Disponibilità alberi di trascinamento pag. $32 \div 35$. Flange di montaggio pag. $36 \div 37$.
- (c) Fange intermedie a pag. 53.
- (d) Disponibilità giunti a manicotto: MVP30 a pag. 55 e 57 MVP48 a pag. 59 MVP60 a pag. 61

ESEMPIO D'ORDINE

Pompa doppia con presa di moto passante MVP 60 con RN2 (Limitatore di coppia a doppia taratura con controllo remoto della portata) + MVP 30 con LS0 (regolatore di portata).

SEZIONI SEPARATE

a pag.67.

Sezione anteriore

MVP 60.60S-06S8-LMF/MC-N-RN2-1-S-LS2-G-AS5/04 (70/85/2600)

Sezione posteriore

MVP 30.34S-04S5-LMD/MB-N-LS0-Z-G

POMPA DOPPIA ASSEMBLATA

MVP 60.60S-06S8-LMF/MC-N-RN2-1-S-LS2-G (70/85/2600)/ MVP 30.34S-04S5-LMD/MB-N-LS0-Z-G

Pompa doppia con presa di moto passante MVP 48 con RN0 (limitatore di coppia standard) + pompa a ingranaggi KP 30.

SEZIONI SEPARATE

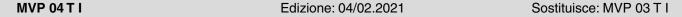
Sezione anteriore

MVP 48.45S-04S5-LME/MC-N-RN0-G-AS5/04 (80/2300)

Sezione posteriore

KP30.51S0-04S5-LED/EB-N-P

POMPA DOPPIA ASSEMBLATA


POMPA MVP 48.45S-04S5-LME/MC-N-RNO-G/KP30.51-04S5-LED/EB (80/2300)

La nostra politica è orientata verso il miglioramento continuo dei prodotti, pertanto, le caratteristiche degli stessi possono cambiare senza preavviso.

DCAT048-ID01 71

04/02.2021

Sostituisce: 02/06.2011

Headquarters:
CASAPPA S.p.A.
Via Balestrieri, 1
43044 Lemignano di Collecchio
Parma (Italy)
Tel. (+39) 0521 30 41 11
Fax (+39) 0521 80 46 00
E-mail: info@casappa.com

www.casappa.com

